skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 22, 2025

Title: Global Well-Posedness for Supercritical SQG With Perturbations of Radially Symmetric Data
Abstract We study the global well-posedness of the supercritical dissipative surface quasi-geostrophic (SQG) equation, a key model in geophysical fluid dynamics. While local well-posedness is known, achieving global well-posedness for large initial data remains open. Motivated by enhanced decay in radial solutions, we aim to establish global well-posedness for small perturbations of potentially large radial data. Our main result shows that for small perturbations of radial data, the SQG equation admits a unique global solution.  more » « less
Award ID(s):
2350129
PAR ID:
10608609
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2024
Issue:
24
ISSN:
1073-7928
Page Range / eLocation ID:
14655 to 14661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the well-posedness of the surface quasi-geostrophic (SQG) front equation. Hunter–Shu–Zhang (2021Pure Appl. Anal.3403–72) established well-posedness under a small data condition as well as a convergence condition on an expansion of the equation’s nonlinearity. In the present article, we establish unconditional large data local well-posedness of the SQG front equation, while also improving the low regularity threshold for the initial data. In addition, we establish global well-posedness theory in the rough data regime by using the testing by wave packet approach of Ifrim–Tataru. 
    more » « less
  2. Abstract In this paper we prove global well-posedness and scattering for the conformal, defocusing, nonlinear wave equation with radial initial data in the critical Sobolev space, for dimensions $$d \geq 4$$. This result extends a previous result proving sharp scattering in the three dimensional case. 
    more » « less
  3. Abstract We consider solutions of the Navier‐Stokes equations in 3d with vortex filament initial data of arbitrary circulation, that is, initial vorticity given by a divergence‐free vector‐valued measure of arbitrary mass supported on a smooth curve. First, we prove global well‐posedness for perturbations of the Oseen vortex column in scaling‐critical spaces. Second, we prove local well‐posedness (in a sense to be made precise) when the filament is a smooth, closed, non‐self‐intersecting curve. Besides their physical interest, these results are the first to give well‐posedness in a neighborhood of large self‐similar solutions of 3d Navier‐Stokes, as well as solutions that are locally approximately self‐similar. © 2023 Wiley Periodicals LLC. 
    more » « less
  4. Abstract This article represents a 1st step toward understanding the well-posedness of the dispersive Hunter–Saxton equation, which arises in the study of nematic liquid crystals. Although the equation has formal similarities with the KdV equation, the lack of $L^2$ control gives it a quasilinear character. Further, the lack of spatial decay obstructs access to dispersive tools, including local smoothing estimates. Here, we give the 1st proof of local and global well-posedness for the Cauchy problem. Secondly, we improve our well-posedness results with respect to the low regularity of the initial data. The key techniques we use include constructing modified energies to realize a normal form analysis in our quasilinear setting, and frequency envelopes to prove continuous dependence with respect to the initial data. 
    more » « less
  5. Abstract The skew mean curvature flow is an evolution equation for a $$d$$ dimensional manifold immersed into $$\mathbb {R}^{d+2}$$, and which moves along the binormal direction with a speed proportional to its mean curvature. In this article, we prove small data global regularity in low-regularity Sobolev spaces for the skew mean curvature flow in dimensions $$d\geq 4$$. This extends the local well-posedness result in [7]. 
    more » « less