skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origins of Uncertainty in the Response of the Summer North Pacific Subtropical High to CO 2 Forcing
Abstract The variability of the summer North Pacific Subtropical High (NPSH) has substantial socioeconomic impacts. However, state‐of‐the‐art climate models significantly disagree on the response of the NPSH to anthropogenic warming. Inter‐model spread in NPSH projections originates from models' inconsistency in simulating tropical precipitation changes. This inconsistency in precipitation changes is partly due to inter‐model spread in tropical sea surface temperature (SST) changes, but it can also occur independently of uncertainty in SST changes. Here, we show that both types of precipitation uncertainty influence the NPSH via the Matsuno‐Gill wave response, but their relative impact varies by region. Through the modulation of low cloud fraction, inter‐model spread of the NPSH can have a further impact on extra‐tropical land surface temperature. The teleconnection between tropical precipitation and the NPSH is examined through a series of numerical experiments.  more » « less
Award ID(s):
2047270
PAR ID:
10500208
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming) contributes substantially to the uncertainty in future precipitation projections over tropical oceans. Here, we investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin average precipitation) to local sea surface temperature (SST) change by dissecting it into three components, namely the sensitivity of P* to relative SST (SSTrel, SST minus the tropical mean SST) changes, the sensitivity of P* to surface convergence changes, and the sensitivity of surface convergence to SST gradient changes. We show that the relationships between P* and SSTrel, and between P*, surface convergence, and SST gradients are largely constant during climate change. This allows us to constrain regional hydrological sensitivity based on present‐day SST‐precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a main source of uncertainty in regional hydrological sensitivity and is likely underestimated in GCMs. 
    more » « less
  2. Abstract. Future changes in the El Niño–Southern Oscillation (ENSO) are uncertain, both because future projections differ between climate models and because the large internal variability of ENSO clouds the diagnosis of forced changes in observations and individual climate model simulations. By leveraging 14 single model initial-condition large ensembles (SMILEs), we robustly isolate the time-evolving response of ENSO sea surface temperature (SST) variability to anthropogenic forcing from internal variability in each SMILE. We find nonlinear changes in time in many models and considerable inter-model differences in projected changes in ENSO and the mean-state tropical Pacific zonal SST gradient. We demonstrate a linear relationship between the change in ENSO SST variability and the tropical Pacific zonal SST gradient, although forced changes in the tropical Pacific SST gradient often occur later in the 21st century than changes in ENSO SST variability, which can lead to departures from the linear relationship. Single-forcing SMILEs show a potential contribution of anthropogenic forcing (aerosols and greenhouse gases) to historical changes in ENSO SST variability, while the observed historical strengthening of the tropical Pacific SST gradient sits on the edge of the model spread for those models for which single-forcing SMILEs are available. Our results highlight the value of SMILEs for investigating time-dependent forced responses and inter-model differences in ENSO projections. The nonlinear changes in ENSO SST variability found in many models demonstrate the importance of characterizing this time-dependent behavior, as it implies that ENSO impacts may vary dramatically throughout the 21st century. 
    more » « less
  3. Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing. 
    more » « less
  4. Abstract The Paleocene‐Eocene Thermal Maximum (PETM, ∼56 million years ago) is among the best‐studied climatic warming events in Earth history and is often compared to projected anthropogenic climate change. The PETM is characterized by a rapid negative carbon isotope excursion and global temperature increase of 4–5°C, accompanied by changes in spatial patterns of evaporation and precipitation in the global hydrologic cycle. Recent climate model reconstructions suggest a regionally complex and non‐linear response of one important aspect of global hydrology: enhanced moisture flux from the low‐latitude ocean. In this study, we use the elemental and stable isotope geochemistry of surface‐dwelling planktic foraminifera from a low‐latitude Atlantic deep‐sea sedimentary record (IODP Site 1258) to quantify changes in sea‐surface temperature (SST) and salinity. Foraminiferal Mg/Ca and δ18O values are interpreted with a Bayesian forward proxy system model to reconstruct how SST and salinity changed over the PETM at this site. These temperature and salinity reconstructions are then compared to recent climate model simulations of Eocene warming. Our reconstructions indicate °C of warming, in excellent agreement with estimates from other tropical locations and modeled PETM warmth. The regional change in salinity is not as straightforward, demonstrating a slight decrease at extremepCO2forcing (a reversal of the modeled sense of change under moderatepCO2forcing) in both model and proxy reconstructions. The cause of this non‐linear response is unclear but may relate to increased South American continental runoff or shifts in the Inter‐Tropical Convergence Zone. 
    more » « less
  5. Abstract Climate models generally overestimate observed Southern Ocean surface warming trends over the past three decades. This discrepancy could be due to biased surface freshwater fluxes in climate models, which underestimate observed precipitation increases and do not account for Antarctic Ice Sheet and shelf mass loss. Though past modeling experiments show surface cooling in response to freshwater perturbations, sea surface temperature (SST) responses vary widely across models. To address these ambiguities, we compute linear SST response functions for standardized freshwater flux increases across a subset of CMIP6 models. For 1990–2021, underestimated freshwater fluxes can explain up to 60% of the model‐observation SST trend difference. The response functions reveal that Southern Ocean SST trends are more sensitive to freshwater fluxes concentrated along the Antarctic margin versus more spatially distributed fluxes. Our results quantify, for the first time, the impact of missing freshwater forcing on Southern Ocean SST trends across a multi‐model ensemble. 
    more » « less