skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrafast Shift Current in SnS 2 Single Crystals: Structure Considerations, Modeling, and THz Emission Spectroscopy
Abstract Above‐band gap optical excitation of non‐centrosymmetric semiconductors can lead to the spatial shift of the center of electron charge in a process known as shift current. Shift current is investigated in single‐crystal SnS2, a layered semiconductor with the band gap of ≈2.3 eV, by THz emission spectroscopy and first principles density functional theory (DFT). It is observed that normal incidence excitation with above gap (400 nm; 3.1 eV) pulses results in THz emission from 2H SnS2() polytype, where such emission is nominally forbidden by symmetry. It is argued that the underlying symmetry breaking arises due to the presence of stacking faults that are known to be ubiquitous in SnS2single crystals and construct a possible structural model of a stacking fault with symmetry properties consistent with the experimental observations. In addition to shift current, it is observed THz emission by optical rectification excited by below band gap (800 nm; 1.55 eV) pulses but it requires excitation fluence more than two orders of magnitude higher to produce same signal amplitude. These results suggest that ultrafast shift current in which can be excited with visible light in blue–green portion of the spectrum makes SnS2a promising source material for THz photonics.  more » « less
Award ID(s):
1750944 2150562 2202472
PAR ID:
10500331
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
12
Issue:
19
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sadwick, Laurence P; Yang, Tianxin (Ed.)
    We report on THz emission in single-crystalline SnS2 in response to above bandgap excitation. Symmetry properties of THz generation suggest that its origin is an ultrafast surface shift current, a 2nd order nonlinear effect that can occur as a result of above-gap photoexcitation of a non-centrosymmetric semiconductor. Multilayer SnS2 can exist in several polytypes that differ in the layer stacking. Of those polytypes, 2H and 18R are centrosymmetric while 4H is not. While Raman spectroscopy suggests that the single crystalline SnS2 in our experiments is 2H, its THz emission has symmetry that are fully consistent with the P3m1 phase of 4H polytype. We hypothesize that the stacking disorder, where strain-free stacking faults that interrupt regions of 2H polytype, can break inversion symmetry and result in THz emission. These results lay the foundations for application of SnS2 as an efficient, stable, flexible THz source material, and highlight the use of THz spectroscopy as a sensitive tool for establishing symmetry properties of materials. 
    more » « less
  2. Germanium sulfide (GeS) and germanium selenide (GeSe) are layered 2D van der Waals materials that belong to a family of group-IV monochalcogenides. These semiconductors have high carrier mobilities and moderate band gaps in the near infrared. Additionally, we have demonstrated that above gap photoexcitation results in ultrafast surface photocurrents and emission of THz pulses due to a spontaneous ferroelectric polarization that breaks inversion symmetry in the monolayer. Beyond the sub-picosecond time scales of shift currents, photoexcited carriers in both materials result in long-lived transient conductivity. We find that 800 nm excitation results in longer lived free photocarriers, persisting for hundreds of picoseconds to several nanoseconds, compared to tens to hundreds of picoseconds lifetimes for 400 nm excitation. Here, we report on tailoring the free photoexcited carrier lifetimes by intercalation of zero-valent Cu into the van der Waals gaps of GeS and GeSe. Density functional theory calculations predict that Cu atoms introduce mid-gap states. We demonstrate that intercalating only ∼3 atomic % of zero-valent Cu reduces the carrier lifetime by as much as two-to-four-fold, raising the prospects of these materials being used for high-speed optoelectronics. 
    more » « less
  3. Abstract Germanium sulfide (GeS) is a 2D semiconductor with potential for high-speed optoelectronics and photovoltaics due to its near-infrared band gap and high mobility of optically excited charge carriers. Here, we use time-resolved THz spectroscopy to investigate the differences in ultrafast carrier dynamics in GeS following near-band gap photoexcitation (1.55 eV), which penetrates deep into the multilayer GeS, and excitation with above-band gap photon energy (3.1 eV), which is absorbed within a sub-20 nm surface layer. We find that the photoexcited carriers in the bulk have significantly longer lifetimes and higher mobility, as they are less impacted by trap states that affect carrier behavior in the surface layer. These insights are important for designing GeS-based photodetectors, solar energy conversion devices, and sensors that leverage the sensitivity of surface-layer photoexcited carriers to trap states. 
    more » « less
  4. null (Ed.)
    Excitons in two-dimensional transition metal dichalcogenide monolayers (2D-TMDs) are of essential importance due to their key involvement in 2D-TMD-based applications. For instance, exciton dissociation and exciton radiative recombination are indispensible processes in photovoltaic and light-emitting devices, respectively. These two processes depend drastically on the photogeneration efficiency and lifetime of excitons. Here, we incorporate femtosecond pump–probe spectroscopy to investigate the ultrafast dynamics of exciton formation and decay in a single crystal of monolayer 2D tungsten disulfide (WS 2 ). Investigation of the formation dynamics of the lowest exciton (X A ) indicated that the formation time linearly increases from ∼150 fs upon resonant excitation, to ∼500 fs following excitation that is ∼1.1 eV above the band-gap. This dependence is attributed to the time it takes highly excited electrons in the conduction band (CB) to relax to the CB minimum (CBM) and contribute to the formation of X A . This is confirmed by infrared measurements of electron intraband relaxation dynamics. Furthermore, pump–probe experiments suggested that the X A ground state depletion recovery dynamics depend on the excitation energy as well. The average recovery time increased from ∼10 ps in the case of resonant excitation to ∼50 ps following excitation well above the band-gap. Having the ability to control whether generating short-lived or long-lived electron–hole pairs in 2D-TMD monolayers opens a new horizon for the application of these materials. For instance, long-lived electron–hole pairs are appropriate for photovoltaic devices, but short-lived excitons are more beneficial for lasers with ultrashort pulses. 
    more » « less
  5. The effect of CO rotational energy on bimolecular reactions to form electronically excited C 2 is reported here. The reactions are initiated by CO multiphoton absorption of 800 nm light in strong optical fields using two different polarization configurations based on shaped chirped pulses. The observation of Swan band emission indicates that C 2 (d 3 Π g ) is a reaction product. The optical polarization is in the form of either an optical centrifuge or a dynamic polarization grating. In each case, the strong field aligns CO molecules and induces multiphoton absorption. Power-dependent measurements indicate at least seven photons are absorbed by CO; CO(a 3 Π) is a likely reactant candidate based on kinetic modeling. Relative reaction efficiencies are determined by measuring Swan band emission intensities. For a CO pressure of 100 Torr and an optical intensity of I = 2.0 × 10 13 W cm −2 , the relative C 2 (d 3 Π g ) yield with the dynamic polarization grating is twice that with the optical centrifuge. The extent of CO rotational energy was determined for both optical polarizations using high-resolution transient IR absorption for a number of CO states with J = 62–73 and E rot up to 10 400 cm −1 . Optical centrifuge excitation generates at least 2.5 times more rotationally excited CO molecules per quantum state than the dynamic polarization grating. The results indicate that the effect of large amounts of CO rotational energy is to reduce the yield of the C 2 products. 
    more » « less