skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Responsiveness of Charged Double Network Hydrogels to Ionic Environment
Abstract Charged double network (DN) hydrogels are widely studied for their desirable mechanical strength and tunable properties. In this work, the influence of polymer concentration on microstructure and properties of agarose/polyacrylic acid DN hydrogels is studied. Agarose, the first network, is a brittle biopolymer, while polyacrylic acid (PAAc) is a weak polyelectrolyte. The microstructure, visualized in liquid environment, displays an agarose scaffold coated and interconnected by PAAc, deviating from the common assumption of an entangled double network. Importantly, the charging of PAAc in the hydrogel is regulated not only by the pH and weak polyelectrolyte effects, but also by the restricted swelling of the double network, and hence, it is an inherent regulation mechanism of charged hydrogels. The interactions between the hydrogel and the ionic environment induce microstructural changes and charging of the double network, impacting surface properties such as topography, stiffness, and adhesion, which are spatially resolved by liquid‐environment atomic force microscopy. The responsiveness of the DN hydrogels significantly depends on both polymer concentrations and ion concentrations. These findings provide insights into the responsive behavior of double network hydrogels and reveal universal mechanisms for charged hydrogels, which can guide the future development of functional soft materials.  more » « less
Award ID(s):
2154530
PAR ID:
10500338
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
37
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Double-network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft-wet materials. Current knowledge of DN gels from synthesis methods to toughening mechanisms almost exclusively comes from chemically-linked DN hydrogels by experiments. Molecular modeling and simulations of inhomogeneous DN structure in hydrogels have proved to be extremely challenging. Herein, we developed a new multiscale simulation platform to computationally investigate the early fracture of physically-chemically linked agar/polyacrylamide (agar/PAM) DN hydrogels at a long timescale. A “random walk reactive polymerization” (RWRP) was developed to mimic a radical polymerization process, which enables to construct a physically-chemically linked agar/PAM DN hydrogel from monomers, while conventional and steered MD simulations were conducted to examine the structural-dependent energy dissipation and fracture behaviors at the relax and deformation states. Collective simulation results revealed that energy dissipation of agar/PAM hydrogels was attributed to a combination of the pulling out of agar chains from the DNs, the disruption of massive hydrogen bonds between and within DN structures, and the strong association of water molecules with both networks, thus explaining a different mechanical enhancement of agar/PAM hydrogels. This computational work provided atomic details of network structure, dynamics, solvation, and interactions of a hybrid DN hydrogel, and a different structural-dependent energy dissipation mode and fracture behavior of a hybrid DN hydrogel, which help to design tough hydrogels with new network structures and efficient energy dissipation modes. Additionally, the RWRP algorithm can be generally applied to construct the radical polymerization-produced hydrogels, elastomers, and polymers. 
    more » « less
  2. Abstract To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and mechanotransduction studies but lack features that make them ideal for functional engineered cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical properties. Acellular and cell-laden studies were completed to assess rheologic and compressive properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose–2 mg/mL collagen I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and continual glycosaminoglycan production, indicating promise toward the development of an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies. 
    more » « less
  3. Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface. 
    more » « less
  4. Incorporation of the transition metal ion V(V) into hydrogels has been used to impart photoresponsive behavior, which was used to tune materials properties during light irradiation. The photoreaction in QHE-cellulose/agarose hydrogels coordinated with vanadium was evidenced by a clear color change of yellow to blue through a green intermediate. This color change was attributed to the reduction of V(V) to V(IV) as described in our previous work. A concomitant oxidative breakdown of the polysaccharide chain was noticeable upon the reduction of V(V) with a decrease in stiffness (G′) of the hydrogel material. This reduction of the metal ion and breakdown of polysaccharide chain induced irreversible changes in the microstructure of the hydrogel, enabling the controlled delivery of V(IV) and/or encapsulated cargo. Scanning electron microscopy studies showed an increase in pore sizes and guest cavity formation during irradiation. In addition to the significant drop in mechanical properties like storage and loss modulus in the gel materials, a viscosity drop in the polymer solution was observed through irradiation, indicating breakdown of the polysaccharide chain. A photomask can be used to create discrete patterns on these materials upon irradiation 
    more » « less
  5. null (Ed.)
    Approaches to control the microstructure of hydrogels enable the control of cell–material interactions and the design of stimuli-responsive materials. We report a versatile approach for the synthesis of anisotropic polyacrylamide hydrogels using lyotropic chromonic liquid crystal (LCLC) templating. The orientational order of LCLCs in a mold can be patterned by controlling surface anchoring conditions, which in turn patterns the polymer network. The resulting hydrogels have tunable pore size and mechanical anisotropy. For example, the elastic moduli measured parallel and perpendicular to the LCLC order are 124.9 ± 6.4 kPa and 17.4 ± 1.1 kPa for a single composition. The resulting anisotropic hydrogels also have 30% larger swelling normal to the LCLC orientation than along the LCLC orientation. By patterning the LCLC order, this anisotropic swelling can be used to create 3D hydrogel structures. These anisotropic gels can also be functionalized with extracellular matrix (ECM) proteins and used as compliant substrata for cell culture. As an illustrative example, we show that the patterned hydrogel microstructure can be used to direct the orientation of cultured human corneal fibroblasts. This strategy to make anisotropic hydrogels has potential for enabling patternable tissue scaffolds, soft robotics, or microfluidic devices. 
    more » « less