skip to main content

This content will become publicly available on August 11, 2023

Title: Superlubricity of pH-responsive hydrogels in extreme environments
Poly(acrylamide- co -acrylic acid) (P(AAm- co -AA)) hydrogels are highly tunable and pH-responsive materials frequently used in biomedical applications. The swelling behavior and mechanical properties of these gels have been extensively characterized and are thought to be controlled by the protonation state of the acrylic acid (AA) through the regulation of solution pH. However, their tribological properties have been underexplored. Here, we hypothesized that electrostatics and the protonation state of AA would drive the tribological properties of these polyelectrolyte gels. P(AAm- co -AA) hydrogels were prepared with constant acrylamide (AAm) concentration (33 wt%) and varying AA concentration to control the amount of ionizable groups in the gel. The monomer:crosslinker molar ratio (200:1) was kept constant. Hydrogel swelling, stiffness, and friction behavior were studied by systematically varying the acrylic acid (AA) concentration from 0–12 wt% and controlling solution pH (0.35, 7, 13.8) and ionic strength ( I = 0 or 0.25 M). The stiffness and friction coefficient of bulk hydrogels were evaluated using a microtribometer and borosilicate glass probes as countersurfaces. The swelling behavior and elastic modulus of these polyelectrolyte hydrogels were highly sensitive to solution pH and poorly predicted the friction coefficient ( µ ), which decreased with increasing AA concentration. P(AAm- co more » -AA) hydrogels with the greatest AA concentrations (12 wt%) exhibited superlubricity ( µ = 0.005 ± 0.001) when swollen in unbuffered, deionized water (pH = 7, I = 0 M) and 0.5 M NaOH (pH = 13.8, I = 0.25 M) ( µ = 0.005 ± 0.002). Friction coefficients generally decreased with increasing AA and increasing solution pH. We postulate that tunable lubricity in P(AAm- co -AA) gels arises from changes in the protonation state of acrylic acid and electrostatic interactions between the probe and hydrogel surface. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Chemistry
Sponsoring Org:
National Science Foundation
More Like this
  1. This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid) (PMAA) and upper critical solution temperature block copolymer micelles (UCSTMs) composed of poly(acrylamide- co -acrylonitrile) P(AAm- co -AN) cores and polyvinylpyrrolidone (PVP) coronae. UCSTMs had a hydrated diameter of ∼380 nm with a transition temperature between 45 and 50 °C, regardless of solution pH. Importantly, micelles were able to hydrogen-bond with PMAA, with the critical interaction pH being temperature dependent. To better understand the thermodynamic nature of these interactions, in depth studies using isothermal titration calorimetry (ITC) were conducted. ITC reveals opposite signs of enthalpies for binding of PMAA with micellar coronae vs. with the cores. Moreover, ITC indicates that pH directs the interactions of PMAA with micelles, selectively enabling binding with the micellar corona at pH 4 or with both the corona and the core at pH 3. We then explore UCSTM/PMAA LbL assemblies and show that the two distinct modes of PMAA interaction with the micelles ( i.e. whether or not PMAA binds with the core) had significant effects on the film composition, structure, and functionality. Consistent withmore »PMAA hydrogen bonding with the P(AAm- co -AN) micellar cores, a significantly higher fraction of PMAA was found within the films assembled at pH 3 compared to pH 4 by both spectroscopic ellipsometry and neutron reflectometry. Selective interaction of PMAA with PVP coronae of the assembled micelles, achieved by the emergence of partial ionization of PMAA at pH 4 was critical for preserving film functionality demonstrated as temperature-controlled swelling and release of a model small molecule, pyrene. The work done here can be applied to a multitude of assembled polymer systems in order to predict suppression/retention of their stimuli-responsive behavior.« less
  2. Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and thenmore »formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10.« less
  3. A self-assembled co-hydrogel system with sol-gel two-phase coexistence and mucoadhesive properties was developed based on the combined properties of fluoroalkyl double-ended poly(ethylene glycol) (Rf-PEG-Rf) and poly(acrylic acid) (PAA), respectively. We have synthesized an Rf-PEG-g-PAA (where g denotes grafted) copolymer and integrated it into the Rf-PEG-Rf physically cross-linked micellar network to form a co-hydrogel system. Tensile strengths between the co-hydrogel surfaces and two different sets of mucosal surfaces were acquired. One mucosal surface was made of porcine stomach mucin Type II, while the other one is a pig small intestine. The experimental results show that the largest maximum detachment stresses (MDSs) were obtained when the Rf-PEG-g-PAA’s weight percent in the dehydrated polymer mixture is ~15%. Tensile experiments also found that MDSs are greater in acidic conditions (pH = 4–5) (123.3 g/cm2 for the artificial mucus, and 43.0 g/cm2 for pig small intestine) and basic conditions (pH = 10.6) (126.9 g/cm2, and 44.6 g.cm2, respectively) than in neutral pH (45.4 g/cm2, and 30.7 g.cm2, respectively). Results of the rheological analyses using shear strain amplitude sweep and frequency sweep reveal that the Rf-PEG-g-PAA was physically integrated into the Rf-PEG-Rf micellar network, and the co-hydrogels remain physically cross-linked in three-dimensional micellar networks with long-termmore »physical dispersion stability. Therefore, the co-hydrogel system is promising for drug delivery applications on mucosal surfaces.« less
  4. Chemically functional hydrogel microspheres hold significant potential in a range of applications including biosensing, drug delivery, and tissue engineering due to their high degree of flexibility in imparting a range of functions. In this work, we present a simple, efficient, and high-throughput capillary microfluidic approach for controlled fabrication of monodisperse and chemically functional hydrogel microspheres via formation of double emulsion drops with an ultra-thin oil shell as a sacrificial template. This method utilizes spontaneous dewetting of the oil phase upon polymerization and transfer into aqueous solution, resulting in poly(ethylene glycol) (PEG)-based microspheres containing primary amines (chitosan, CS) or carboxylates (acrylic acid, AA) for chemical functionality. Simple fluorescent labelling of the as-prepared microspheres shows the presence of abundant, uniformly distributed and readily tunable functional groups throughout the microspheres. Furthermore, we show the utility of chitosan's primary amine as an efficient conjugation handle at physiological pH due to its low pKa by direct comparison with other primary amines. We also report the utility of these microspheres in biomolecular conjugation using model fluorescent proteins, R-phycoerythrin (R-PE) and green fluorescent protein (GFPuv), via tetrazine– trans -cyclooctene (Tz–TCO) ligation for CS-PEG microspheres and carbodiimide chemistry for AA-PEG microspheres, respectively. The results show rapid coupling ofmore »R-PE with the microspheres' functional groups with minimal non-specific adsorption. In-depth protein conjugation kinetics studies with our microspheres highlight the differences in reaction and diffusion of R-PE with CS-PEG and AA-PEG microspheres. Finally, we demonstrate orthogonal one-pot protein conjugation of R-PE and GFPuv with CS-PEG and AA-PEG microspheres via simple size-based encoding. Combined, these results represent a significant advancement in the rapid and reliable fabrication of monodisperse and chemically functional hydrogel microspheres with tunable properties.« less
  5. Calcium silicate hydrate (CSH) gels, the main binding phases of hydrated cement, are the most widely utilized synthetic materials. To understand the influences of composition and polymers on the reaction kinetics and phase formation, CSH gels with varying Ca/Si ratios and amounts of poly (acrylamide-co-acrylic acid) partial sodium salt (PAAm-co-PAA) were synthesized via a direct method. The CSH gels were characterized through isothermal calorimetry, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy at different ages. By increasing the Ca/Si ratio from 0.8 to 1.0, the formation of CSH was enhanced with a 5.4% lower activation energy, whereas the incorporation of PAAm-co-PAA increased the temperature sensitivity of the reactions with an 83.3% higher activation energy. In the presence of PAAm-co-PAA, the reaction rate was retarded at an early age and the negative impact faded over time. The results of an XRD analysis indicated the formation of tobermorite as the main phase of the CSH gels, while the addition of PAAm-co-PAA resulted in a postponed calcium hydroxide consumption and CSH formation, which was confirmed by the decreased FTIR intensity of the C=O bond, Si–O stretching and Si–O bonds. The increased Raman vibrations of Si–O–Si bending Q2, Ca–Omore »bonds, O–Si–O and asymmetric bending vibrations of SiO4 tetrahedra in the presence of PAAm-co-PAA indicate the intercalation of the polymeric phase and internal deformation of CSH gels.« less