skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multifunctional soft stretchable strain sensor for complementary optical and electrical sensing of fatigue cracks
Abstract Fatigue-induced cracking in steel components and other brittle materials of civil structures is one of the primary mechanisms of degrading structural integrity and can lead to sudden failures. However, these cracks are often difficult to detect during visual inspections, and off-the-shelf sensing technologies can generally only be used to monitor already identified cracks because of their spatial localization. A solution is to leverage advances in large area electronics to cover large surfaces with skin-type sensors. Here, the authors propose an elastic and stretchable multifunctional skin sensor that combines optical and capacitive sensing properties. The multifunctional sensor consists of a soft stretchable structural color film sandwiched between transparent carbon nanotube electrodes to form a parallel plate capacitor. The resulting device exhibits a reversible and repeatable structural color change from light blue to deep blue with an angle-independent property, as well as a measurable change in capacitance, under external mechanical strain. The optical function is passive and engineered to visually assist in localizing fatigue cracks, and the electrical function is added to send timely warnings to infrastructure operators. The performance of the device is characterized in a free-standing configuration and further extended to a fatigue crack monitoring application. A correlation coefficient-based image processing method is developed to quantify the strain measured by the optical color response. Results show that the sensor performs well in detecting and quantifying fatigue cracks using both the color and capacitive signals. In particular, the color signal can be measured with inexpensive cameras, and the electrical signal yields good linearity, resolution, and accuracy. Tests conducted on two steel specimens demonstrate a minimum detectable crack length of 0.84 mm.  more » « less
Award ID(s):
2011754
PAR ID:
10500444
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOPScience
Date Published:
Journal Name:
Smart Materials and Structures
Volume:
32
Issue:
4
ISSN:
0964-1726
Page Range / eLocation ID:
045010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Skin‐interfaced high‐sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin‐attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low‐cost laser scribing of an adhesive composite with polyimide powders and amine‐based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser‐induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real‐time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process. 
    more » « less
  2. A stretchable pressure sensor is a necessary tool for perceiving physical interactions that take place on soft/deformable skins present in human bodies, prosthetic limbs, or soft robots. However, all existing types of stretchable pressure sensors have an inherent limitation, which is the interference of stretching with pressure sensing accuracy. Here, we present a design for a highly stretchable and highly sensitive pressure sensor that can provide unaltered sensing performance under stretching, which is realized through the synergistic creations of an ionic capacitive sensing mechanism and a mechanically hierarchical microstructure. Via this optimized structure, our sensor exhibits 98% strain insensitivity up to 50% strain and a low pressure detection limit of 0.2 Pa. With the capability to provide all the desired characteristics for quantitative pressure sensing on a deformable surface, this sensor has been used to realize the accurate sensation of physical interactions on human or soft robotic skin. 
    more » « less
  3. Abstract Highly stretchable fiber sensors have attracted significant interest recently due to their applications in wearable electronics, human–machine interfaces, and biomedical implantable devices. Here, a scalable approach for fabricating stretchable multifunctional electrical and optical fiber sensors using a thermal drawing process is reported. The fiber sensors can sustain at least 580% strain and up to 750% strain with a helix structure. The electrical fiber sensor simultaneously exhibits ultrahigh stretchability (400%), high gauge factors (≈1960), and excellent durability during 1000 stretching and bending cycles. It is also shown that the stretchable step‐index optical fibers facilitate detection of bending and stretching deformation through changes in the light transmission. By combining both electrical and optical detection schemes, multifunctional fibers can be used for quantifying and distinguishing multimodal deformations such as bending and stretching. The fibers’ utility and functionality in sensing and control applications are demonstrated in a smart glove for controlling a virtual hand model, a wrist brace for wrist motion tracking, fiber meshes for strain mapping, and real‐time monitoring of multiaxial expansion and shrinkage of porcine bladders. These results demonstrate that the fiber sensors can be promising candidates for smart textiles, robotics, prosthetics, and biomedical implantable devices. 
    more » « less
  4. Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices. 
    more » « less
  5. Abstract Flexible, architectured, photonic nanostructures such as colloidal photonic crystals (CPCs) can serve as colorimetric strain sensors, where external applied strain leads to a noticeable color change. However, CPCs' response to strain is difficult to quantify without the use of optical spectroscopy. Integration of flexible electrical readout of CPCs' color change is a challenge due to a lack of flexible/stretchable electrical transducers. This work details a colorimetric strain sensor with optoelectrical quantification based on an integrated system of CPCs over a crumpled graphene phototransducer, which optoelectrically quantifies CPCs, response to strain. The hybrid system enables direct visual perception of strain, while strain quantification via electrical measurement of the hybrid system outperforms that of crumpled graphene strain sensors by more than 100 times. The unique combination of a photonic sensing element with a deformable transducer will allow for the development of novel, electrically quantifiable colorimetric sensors with high sensitivity. 
    more » « less