Soft robots have garnered interest for real-world applications because of their intrinsic safety embedded at the material level. These robots use deformable materials capable of shape and behavioral changes and allow conformable physical contact for manipulation. Yet, with the introduction of soft and stretchable materials to robotic systems comes a myriad of challenges for sensor integration, including multimodal sensing capable of stretching, embedment of high-resolution but large-area sensor arrays, and sensor fusion with an increasing volume of data. This Review explores the emerging confluence of e-skins and machine learning, with a focus on how roboticists can combine recent developments from the two fields to build autonomous, deployable soft robots, integrated with capabilities for informative touch and proprioception to stand up to the challenges of real-world environments.
more »
« less
A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins
A stretchable pressure sensor is a necessary tool for perceiving physical interactions that take place on soft/deformable skins present in human bodies, prosthetic limbs, or soft robots. However, all existing types of stretchable pressure sensors have an inherent limitation, which is the interference of stretching with pressure sensing accuracy. Here, we present a design for a highly stretchable and highly sensitive pressure sensor that can provide unaltered sensing performance under stretching, which is realized through the synergistic creations of an ionic capacitive sensing mechanism and a mechanically hierarchical microstructure. Via this optimized structure, our sensor exhibits 98% strain insensitivity up to 50% strain and a low pressure detection limit of 0.2 Pa. With the capability to provide all the desired characteristics for quantitative pressure sensing on a deformable surface, this sensor has been used to realize the accurate sensation of physical interactions on human or soft robotic skin.
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10313801
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 48
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Development of highly stretchable and sensitive soft strain sensors is of great importance for broad applications in artificial intelligence, wearable devices, and soft robotics, but it proved to be a profound challenge to integrate the two seemingly opposite properties of high stretchability and sensitivity into a single material. Herein, we designed and synthesized a new fully polymeric conductive hydrogel with an interpenetrating polymer network (IPN) structure made of conductive PEDOT:PSS polymers and zwitterionic poly(HEAA- co -SBAA) polymers to achieve a combination of high mechanical, biocompatible, and sensing properties. The presence of hydrogen bonding, electrostatic interactions, and IPN structures enabled poly(HEAA- co -SBAA)/PEDOT:PSS hydrogels to achieve an ultra-high stretchability of 4000–5000%, a tensile strength of ∼0.5 MPa, a rapid mechanical recovery of 70–80% within 5 min, fast self-healing in 3 min, and a strong surface adhesion of ∼1700 J m −2 on different hard and soft substrates. Moreover, the integration of zwitterionic polySBAA and conductive PEDOT:PSS facilitated charge transfer via optimal conductive pathways. Due to the unique combination of superior stretchable, self-adhesive, and conductive properties, the hydrogels were further designed into strain sensors with high sensing stability and robustness for rapidly and accurately detecting subtle strain- and pressure-induced deformation and human motions. Moreover, an in-house mechanosensing platform provides a new tool to real-time explore the changes and relationship between network structures, tensile stress, and electronic resistance. This new fully polymeric hydrogel strain sensor, without any conductive fillers, holds great promise for broad human-machine interface applications.more » « less
-
Silica-based distributed fiber-optic sensor (DFOS) systems have been a powerful tool for sensing strain, pressure, vibration, acceleration, temperature, and humidity in inextensible structures. DFOS systems, however, are incompatible with the large strains associated with soft robotics and stretchable electronics. We develop a sensor composed of parallel assemblies of elastomeric lightguides that incorporate continuum or discrete chromatic patterns. By exploiting a combination of frustrated total internal reflection and absorption, stretchable DFOSs can distinguish and measure the locations, magnitudes, and modes (stretch, bend, or press) of mechanical deformation. We further demonstrate multilocation decoupling and multimodal deformation decoupling through a stretchable DFOS–integrated wireless glove that can reconfigure all types of finger joint movements and external presses simultaneously, with only a single sensor in real time.more » « less
-
Abstract Highly stretchable fiber sensors have attracted significant interest recently due to their applications in wearable electronics, human–machine interfaces, and biomedical implantable devices. Here, a scalable approach for fabricating stretchable multifunctional electrical and optical fiber sensors using a thermal drawing process is reported. The fiber sensors can sustain at least 580% strain and up to 750% strain with a helix structure. The electrical fiber sensor simultaneously exhibits ultrahigh stretchability (400%), high gauge factors (≈1960), and excellent durability during 1000 stretching and bending cycles. It is also shown that the stretchable step‐index optical fibers facilitate detection of bending and stretching deformation through changes in the light transmission. By combining both electrical and optical detection schemes, multifunctional fibers can be used for quantifying and distinguishing multimodal deformations such as bending and stretching. The fibers’ utility and functionality in sensing and control applications are demonstrated in a smart glove for controlling a virtual hand model, a wrist brace for wrist motion tracking, fiber meshes for strain mapping, and real‐time monitoring of multiaxial expansion and shrinkage of porcine bladders. These results demonstrate that the fiber sensors can be promising candidates for smart textiles, robotics, prosthetics, and biomedical implantable devices.more » « less
-
We present iSoft, a single volume soft sensor capable of sensing real-time continuous contact and unidirectional stretching. We propose a low-cost and an easy way to fabricate such piezoresistive elastomer-based soft sensors for instant interactions. We employ an electrical impedance tomography (EIT) technique to estimate changes of resistance distribution on the sensor caused by fingertip contact. To compensate for the rebound elasticity of the elastomer and achieve real-time continuous contact sensing, we apply a dynamic baseline update for EIT. The baseline updates are triggered by fingertip contact and movement detections. Further, we support unidirectional stretching sensing using a model-based approach which works separately with continuous contact sensing. We also provide a software toolkit for users to design and deploy personalized interfaces with customized sensors. Through a series of experiments and evaluations, we validate the performance of contact and stretching sensing. Through example applications, we show the variety of examples enabled by iSoft.more » « less