skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stress-corrosion cracking of polypropylene in harsh oxidizing environments
Thermoplastic pipes are widely used in the semiconductor industry, where they are used to drain highly corrosive liquid waste. When exposed to oxidizing environments, thermoplastic pipes can undergo stress-corrosion cracking (SCC), potentially causing them to fail prematurely in the absence of appropriate design and maintenance guidelines. Here, the stress-corrosion cracking behavior of polypropylene, commonly used in waste drainage pipes for dilute sulfuric acid/hydrogen peroxide mixtures (Piranha solutions), is investigated as a function of applied energy release rate. Sub-critical crack growth experiments are performed with compact tension specimens in sulfuric acid/hydrogen peroxide mixtures using a custom constant-force loading system to evaluate the effects of temperature and chemical composition on SCC crack growth. The activation energy for the SCC process is 99.7 ± 15.3 kJ/mol, and the crack growth rate depends sensitively on the concentrations of sulfuric acid and hydrogen peroxide in the mixture. We propose a practical guideline to calculate the service life of polypropylene pipes in Piranha solutions using crack velocity curves and show that accidental exposure to a concentrated Piranha solution can significantly reduce service life.  more » « less
Award ID(s):
2011754
PAR ID:
10500469
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Extreme Mechanics Letters
Volume:
64
Issue:
C
ISSN:
2352-4316
Page Range / eLocation ID:
102080
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this work, a systematic investigation is conducted on stress‐assisted erosion of the photocurable and degradable elastomer poly(glycerol sebacate) acrylate (PGSA). Without external stress, it is confirmed that the elastomer undergoes surface erosion in an aqueous environment. Upon the application of mechanical stress, the results revealed that the surface erosion rate is dramatically accelerated. By studying the stress corrosion cracking (SCC) phenomena, it is demonstrated that the crack growth speed depends on the applied load and is significantly faster than the surface erosion rate of the elastomer. It is further shown that with decreasing the cross‐link density of the elastomer, the crack growth speed during SCC can be slowed down due to the increased viscoelasticity of the material. 
    more » « less
  2. In situ crack tip pH measurements for corrosion fatigue (CF) cracks in sensitized AA5456-H116 loaded under low loading frequencies show that cathodic polarization can arrest actively growing stress corrosion cracking (SCC) and CF cracks and produce a local alkaline crack tip pH. A method for measuring crack tip pH in situ was developed. For AA5456-H116 under a single level of high sensitization, CF experiments while loading in the Paris regime at a loading frequency of 0.1 Hz were conducted under freely corroding conditions and a cathodic polarization of −1.3 VSCE. Results show that under freely corroding conditions the crack actively grows, and the crack tip pH is slightly acidic, while at −1.3 VSCE an alkaline crack tip develops with a pH of 10 to 12. The findings of this study support the earlier published hypothesis that crack arrest of SCC and low loading frequency CF cracks is due to corrosion-induced blunting after the development of highly alkaline conditions that cause corrosion of the crack tip region blunting and halting the crack. 
    more » « less
  3. Dissimilar metal welds (DMWs) are commonly used when a high strength steel is overlaid with a corrosion resistant alloy (CRA) for petrochemical applications. There have been reported failures of these DMWs during subsea service while under cathodic protection (CP). These failures are caused by local hydrogen embrittlement of susceptible microstructures that form at the weld fusion boundary. Hydrogen-assisted cracking (HAC) occurs as a result of the local embrittlement and is influenced by base/filler metal combinations, and welding and post-weld heat treatment (PWHT) procedures. A delayed hydrogen cracking test was used to simulate tensile load and hydrogen charging on 8630-FM 625 weld. The failure of this sample was recorded using a high-speed camera to capture the crack initiation and propagation during failure. Fractography was performed using a scanning electron microscope (SEM) along with energy dispersive spectroscopy (EDS). The fracture surfaces, EDS measurement and video timestamps revealed brittle fracture nucleation in the planar growth and CGHAZ regions of the weld. The cracking continued to propagate through the same regions of the weld leading to final ductile failure (microvoid coalescence) in the cellular dendritic region of the weld. 
    more » « less
  4. Abstract UNS N06693 is a Ni-base alloy that provides metal dusting corrosion resistance in steam generator pipes with operating temperatures above 500°C. A crack failure occurred in a 6.5mm thick similar weld pipe joint, located at both fusion zone and heat affected zone, after about 10 years in service and 2 months after weld repair in adjacent weld, which warranted an investigation into possible root causes of failure. This study investigates the potential failure mechanisms that may arise during service (such as stress relaxation cracking, stress corrosion cracking, ductility dip cracking, and creep failure) for UNS N06693 in order to understand the observed cracking behavior. In this year, preliminary fractography, metallurgical characterization, thermodynamic and kinetic CALHAD simulations, and investigation into potential contributing factors (e.g., weld procedure specifications (WPS) and post weld heat treatment (PWHT)) to failure have been completed. The fracture surfaces indicate brittle, intergranular failure, such that no shear lips were observed, and radial lines (crack propagation) were primarily observed in weld fusion zone. Metallurgical characterization near the fracture surface is conducted to reveal the contributing factors to failure, such as intermetallic phases (e.g., Cr-rich α-phase) and distribution of carbide particles (e.g., intergranular chromium carbides), that may contribute to reduced cracking and sensitization resistance. Blocky, intergranular Cr-rich precipitates, either Cr-rich α-phase or Cr-rich M23C6., are observed behind secondary cracks. Based on the initial findings, contributing factors for failure considered are increase in tensile residual stresses due to nearby repair field weld and grain boundary embrittlement due to coarse, blocky Cr-rich phase that likely developed during initial PWHT and within the 10-year service window. In the following year, a more in-depth metallurgical characterization, discussion on contributing causes and possible mitigation strategies for improving microstructural stability and performance-based weldability (e.g., weld procedure and PWHT design), and conclusions with root cause analysis will be provided. 
    more » « less
  5. Abstract Cracking during sintering is a common problem in powder processing and is usually caused by constraint that prevents the sintering material from shrinking in one or more directions. Different factors influence sintering‐induced cracking, including temperature schedule, packing density, and specimen geometry. Here we use the discrete element method to directly observe the stress distribution and sinter‐cracking behavior in edge notched panels sintered under a uniaxial restraint. This geometry allows an easy comparison with traditional fracture mechanics parameters, facilitating analysis of sinter‐cracking behavior. We find that cracking caused by self‐stress during sintering resembles the growth of creep cracks in fully dense materials. By deriving the constrained densification rate from the appropriate constitutive equations, we discover that linear shrinkage transverse to the loading axis is accelerated by a contribution from the effective Poisson's ratio of a sintering solid. Simulation of different notch geometries and initial relative densities reveals conditions that favor densification and minimize crack growth, alluding to design methods for avoiding cracking in actual sintering processes. We combine the far‐field stress and crack length to compute the net section stress, finding that it characterizes the stress profile between the notches and correlates with the sinter‐crack growth rate, demonstrating its potential to quantitatively describe sinter‐cracking. 
    more » « less