skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perspectives and recent advances of two-dimensional III-nitrides: Material synthesis and emerging device applications
Both two-dimensional (2D) transitional metal dichalcogenides (TMDs) and III–V semiconductors have been considered as potential platforms for quantum technology. While 2D TMDs exhibit a large exciton binding energy, and their quantum properties can be tailored via heterostructure stacking, TMD technology is currently limited by the incompatibility with existing industrial processes. Conversely, III-nitrides have been widely used in light-emitting devices and power electronics but not leveraging excitonic quantum aspects. Recent demonstrations of 2D III-nitrides have introduced exciton binding energies rivaling TMDs, promising the possibility to achieve room-temperature quantum technologies also with III-nitrides. Here, we discuss recent advancements in the synthesis and characterizations of 2D III-nitrides with a focus on 2D free-standing structures and embedded ultrathin quantum wells. We overview the main obstacles in the material synthesis, vital solutions, and the exquisite optical properties of 2D III-nitrides that enable excitonic and quantum-light emitters.  more » « less
Award ID(s):
2118809
PAR ID:
10500540
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
16
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The equilibrium and non-equilibrium optical properties of single-layer transition metal dichalcogenides (TMDs) are determined by strongly bound excitons. Exciton relaxation dynamics in TMDs have been extensively studied by time-domain optical spectroscopies. However, the formation dynamics of excitons following non-resonant photoexcitation of free electron-hole pairs have been challenging to directly probe because of their inherently fast timescales. Here, we use extremely short optical pulses to non-resonantly excite an electron-hole plasma and show the formation of two-dimensional excitons in single-layer MoS 2 on the timescale of 30 fs via the induced changes to photo-absorption. These formation dynamics are significantly faster than in conventional 2D quantum wells and are attributed to the intense Coulombic interactions present in 2D TMDs. A theoretical model of a coherent polarization that dephases and relaxes to an incoherent exciton population reproduces the experimental dynamics on the sub-100-fs timescale and sheds light into the underlying mechanism of how the lowest-energy excitons, which are the most important for optoelectronic applications, form from higher-energy excitations. Importantly, a phonon-mediated exciton cascade from higher energy states to the ground excitonic state is found to be the rate-limiting process. These results set an ultimate timescale of the exciton formation in TMDs and elucidate the exceptionally fast physical mechanism behind this process. 
    more » « less
  2. Abstract Strong light–matter interactions in two-dimensional layered materials (2D materials) have attracted the interest of researchers from interdisciplinary fields for more than a decade now. A unique phenomenon in some 2D materials is their large exciton binding energies (BEs), increasing the likelihood of exciton survival at room temperature. It is this large BE that mediates the intense light–matter interactions of many of the 2D materials, particularly in their monolayer limit, where the interplay of excitonic phenomena poses a wealth of opportunities for high-performance optoelectronics and quantum photonics. Within quantum photonics, quantum information science (QIS) is growing rapidly, where photons are a promising platform for information processing due to their low-noise properties, excellent modal control, and long-distance propagation. A central element for QIS applications is a single photon emitter (SPE) source, where an ideal on-demand SPE emits exactly one photon at a time into a given spatiotemporal mode. Recently, 2D materials have shown practical appeal for QIS which is directly driven from their unique layered crystalline structure. This structural attribute of 2D materials facilitates their integration with optical elements more easily than the SPEs in conventional three-dimensional solid state materials, such as diamond and SiC. In this review article, we will discuss recent advances made with 2D materials towards their use as quantum emitters, where the SPE emission properties maybe modulated deterministically. The use of unique scanning tunneling microscopy tools for thein-situgeneration and characterization of defects is presented, along with theoretical first-principles frameworks and machine learning approaches to model the structure-property relationship of exciton–defect interactions within the lattice towards SPEs. Given the rapid progress made in this area, the SPEs in 2D materials are emerging as promising sources of nonclassical light emitters, well-poised to advance quantum photonics in the future. 
    more » « less
  3. Strong interactions between excitons are a characteristic feature of two-dimensional (2D) semiconductors, determining important excitonic properties, such as exciton lifetime, coherence, and photon-emission efficiency. Rhenium disulfide (ReS2), a member of the 2D transition-metal dichalcogenide (TMD) family, has recently attracted great attention due to its unique excitons that exhibit excellent polarization selectivity and coherence features. However, an in-depth understanding of exciton-exciton interactions in ReS2 is still lacking. Here we used ultrafast pump-probe spectroscopy to study exciton-exciton interactions in monolayer (1L), bilayer (2L), and triple layer ReS2. We directly measure the rate of exciton-exciton annihilation, a representative Auger-type interaction between excitons. It decreases with increasing layer number, as observed in other 2D TMDs. However, while other TMDs exhibit a sharp weakening of exciton-exciton annihilation between 1L and 2L, such behavior was not observed in ReS2. We attribute this distinct feature in ReS2 to the relatively weak interlayer coupling, which prohibits a substantial change in the electronic structure when the thickness varies. This work not only highlights the unique excitonic properties of ReS2 but also provides novel insight into the thickness dependence of exciton-exciton interactions in 2D systems. 
    more » « less
  4. Two dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are promising for optical modulation, detection, and light emission since their material properties can be tuned on-demand via electrostatic doping1–21. The optical properties of TMDs have been shown to change drastically with doping in the wavelength range near the excitonic resonances22–26. However, little is known about the effect of doping on the optical properties of TMDs away from these resonances, where the material is transparent and therefore could be leveraged in photonic circuits. Here, we probe the electro-optic response of monolayer TMDs at near infrared (NIR) wavelengths (i.e. deep in the transparency regime), by integrating them on silicon nitride (SiN) photonic structures to induce strong light -matter interaction with the monolayer. We dope the monolayer to carrier densities of (7.2 ± 0.8) × 1013 cm-2, by electrically gating the TMD using an ionic liquid [P14+] [FAP-]. We show strong electro-refractive response in monolayer tungsten disulphide (WS2) at NIR wavelengths by measuring a large change in the real part of refractive index ∆n = 0.53, with only a minimal change in the imaginary part ∆k = 0.004. We demonstrate photonic devices based on electrostatically gated SiN-WS2 phase modulator with high efficiency ( ) of 0.8 V · cm. We show that the induced phase change relative to the change in absorption (i.e. ∆n/∆k) is approximately 125, that is significantly higher than the ones achieved in 2D materials at different spectral ranges and in bulk materials, commonly employed for silicon photonic modulators such as Si and III-V on Si, while accompanied by negligible insertion loss. Efficient phase modulators are critical for enabling large-scale photonic systems for applications such as Light Detection and Ranging (LIDAR), phased arrays, optical switching, coherent optical communication and quantum and optical neural networks27–30. 
    more » « less
  5. Abstract The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light–matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2, the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near‐intrinsic linewidth can be observed at RT when monolayer WS2is coupled with a moderate‐refractive‐index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2through the nanosphere‐supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD‐based nanophotonics and optoelectronics. 
    more » « less