skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Soft Compiler: A Web-Based Tool for the Design of Modular Pneumatic Circuits for Soft Robots
Developing soft circuits from individual soft logic gates poses a unique challenge: with increasing numbers of logic gates, the design and implementation of circuits lead to inefficiencies due to mathematically unoptimized circuits and wiring mistakes during assembly. It is therefore practically important to introduce design tools that support the development of soft circuits. We developed a web-based graphical user interface, the Soft Compiler , that accepts a user-defined robot behavior as a truth table to generate a mathematically optimized circuit diagram that guides the assembly of a soft fluidic circuit. We describe the design and experimental verification of three soft circuits of increasing complexity, using the Soft Compiler as a design tool and a novel pneumatic glove as an input interface. In one example, we reduce the size of a soft circuit from the original 11 logic gates to 4 logic gates while maintaining circuit functionality. The Soft Compiler is a web-based design tool for fluidic, soft circuits and published under an open-source MIT License.  more » « less
Award ID(s):
2011754
PAR ID:
10500608
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
7
Issue:
3
ISSN:
2377-3774
Page Range / eLocation ID:
6060 to 6066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The synthesis of soft matter intelligence with circuit‐driven logic has enabled a new class of robots that perform complex tasks or conform to specialized form factors in unique ways that cannot be realized through conventional designs. Translating this hybrid approach to fluidic systems, the present work addresses the need for sheet‐based circuit materials by leveraging the innate porosity of foam—a soft material—to develop pneumatic components that support digital logic, mixed‐signal control, and analog force sensing in wearables and soft robots. Analytical tools and experimental techniques developed in this work serve to elucidate compressible gas flow through porous sheets, and to inform the design of centimeter‐sized foam resistors with fluidic resistances on the order of 109 Pa s m−3. When embedded inside soft robots and wearables, these resistors facilitate diverse functionalities spanning both sensing and control domains, including digital logic using textile logic gates, digital‐to‐analog signal conversion using ladder networks, and analog sensing of forces up to 40 N via compression‐induced changes in resistance. By combining features of both circuit‐based and materials‐based approaches, foam‐enabled fluidic circuits serve as a useful paradigm for future hybrid robotic architectures that fully embody the sensing and computing capabilities of soft fluidic materials. 
    more » « less
  2. Existing fluidic soft logic gates for controlling soft robots typically depend on labor-intensive manual fabrication or costly printing methods. In our research, we utilize Fused Deposition Modeling to create fully 3D-printed fluidic logic gates, fabricating a valve from thermoplastic polyurethane. We investigate the 3D printing of tubing and introduce a novel extrusion nozzle for tubing production. Our approach significantly reduces the production time for soft fluidic valves from 27 hours using replica molding to 3 hours with FDM printing. We apply our 3D-printed valve to develop optimized XOR gates and D-latch circuits, presenting a rapid and cost- effective fabrication method for fluidic logic gates that aims to make fluidic circuitry more accessible to the soft robotics community. 
    more » « less
  3. The control of pneumatically driven soft robots typically requires electronics. Microcontrollers are connected to power electronics that switch valves and pumps on and off. As a recent alternative, fluidic control methods have been introduced, in which soft digital logic gates permit multiple actuation states to be achieved in soft systems. Such systems have demonstrated autonomous behaviors without the use of electronics. However, fluidic controllers have required complex fabrication processes. To democratize the exploration of fluidic controllers, we developed tube-balloon logic circuitry, which consists of logic gates made from straws and balloons. Each tube-balloon logic device takes a novice five minutes to fabricate and costs $0.45. Tube-balloon logic devices can also operate at pressures of up to 200 kPa and oscillate at frequencies of up to 15 Hz. We configure the tube-balloon logic device as NOT-, NAND-, and NOR-gates and assemble them into a three-ring oscillator to demonstrate a vibrating sieve that separates sugar from rice. Because tube-balloon logic devices are low-cost, easy to fabricate, and their operating principle is simple, they are well suited for exploring fundamental concepts of fluidic control schemes while encouraging design inquiry for pneumatically driven soft robots. 
    more » « less
  4. The recent development of soft fluidic analogs to electrical components aims to reduce the demand for rigid and bulky electromechanical valves and hard electronic controllers within soft robots. This ongoing effort is advanced in this work by creating sheet‐based fluidic diodes constructed from readily available flexible sheets of polymers and textiles using a layered fabrication approach amenable to manufacturing at scale. These sheet‐based fluidic diodes restrict reverse flow over a wide range of differential pressures—exhibiting a diodicity (the ratio of resistance to reverse vs forward flow) of approximately 100×—to address functional limitations exhibited by prior soft fluidic diodes. By harnessing the diode's highly unidirectional flow, soft devices capable of 1) facilitating the capture and storage of pressurized fluid, 2) performing Boolean operations using diode logic, 3) enabling binary encoding of circuits by preventing interactions between different pressurized input lines, and 4) converting oscillating input pressures to a direct current‐like, positively phased output are realized. This work exemplifies the use of fluidic diodes to achieve complex patterns of actuation and unique capabilities through embedded fluidic circuitry, enabling future development of sheet‐based systems—including wearable and assistive robots made from textiles—as well as other soft robotic devices. 
    more » « less
  5. Dual rail adiabatic circuit design offers hardware-level protection against side-channel power analysis attacks such as Differential Power Analysis (DPA) and Correlation Power Analysis (CPA) attacks. While considerable attention has been given to synthesizing logic tree-based adiabatic circuits, comparatively little attention has been given to generating truly secure circuit variants. This paper presents preliminary results for a secure dual rail adiabatic synthesis tool based on Binary Decision Diagrams (BDDs). The tool demonstrates encouraging performance in matching known optimal transistor counts for several basic logic gates, in addition to providing improvement over existing works on established benchmarks. 
    more » « less