Abstract In situ digital inline holography is a technique which can be used to acquire high‐resolution imagery of plankton and examine their spatial and temporal distributions within the water column in a nonintrusive manner. However, for effective expert identification of an organism from digital holographic imagery, it is necessary to apply a computationally expensive numerical reconstruction algorithm. This lengthy process inhibits real‐time monitoring of plankton distributions. Deep learning methods, such as convolutional neural networks, applied to interference patterns of different organisms from minimally processed holograms can eliminate the need for reconstruction and accomplish real‐time computation. In this article, we integrate deep learning methods with digital inline holography to create a rapid and accurate plankton classification network for 10 classes of organisms that are commonly seen in our data sets. We describe the procedure from preprocessing to classification. Our network achieves 93.8% accuracy when applied to a manually classified testing data set. Upon further application of a probability filter to eliminate false classification, the average precision and recall are 96.8% and 95.0%, respectively. Furthermore, the network was applied to 7500 in situ holograms collected at East Sound in Washington during a vertical profile to characterize depth distribution of the local diatoms. The results are in agreement with simultaneously recorded independent chlorophyll concentration depth profiles. This lightweight network exemplifies its capability for real‐time, high‐accuracy plankton classification and it has the potential to be deployed on imaging instruments for long‐term in situ plankton monitoring.
more »
« less
Operation and Productivity Monitoring from Sound Signal of Legacy Pipe Bending Machine via Convolutional Neural Network (CNN)
Abstract This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sensors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram, demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on an edge computer, enabling real-time remote monitoring.
more »
« less
- Award ID(s):
- 2134667
- PAR ID:
- 10500682
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- International Journal of Precision Engineering and Manufacturing
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 2234-7593
- Format(s):
- Medium: X Size: p. 1437-1456
- Size(s):
- p. 1437-1456
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Monitoring the health condition as well as predicting the performance of Lithium-ion batteries are crucial to the reliability and safety of electrical systems such as electric vehicles. However, estimating the discharge capacity and end-of-discharge (EOD) of a battery in real-time remains a challenge. Few works have been reported on the relationship between the capacity degradation of a battery and EOD. We introduce a new data-driven method that combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) models to predict the discharge capacity and the EOD using online condition monitoring data. The CNN model extracts long-term correlations among voltage, current, and temperature measurements and then estimates the discharge capacity. The BiLSTM model extracts short-term dependencies in condition monitoring data and predicts the EOD for each discharge cycle while utilizing the capacity predicted by CNN as an additional input. By considering the discharge capacity, the BiLSTM model is able to use the long-term health condition of a battery to improve the prediction accuracy of its short-term performance. We demonstrated that the proposed method can achieve online discharge capacity estimation and EOD prediction efficiently and accurately.more » « less
-
null (Ed.)Monitoring daily activities is essential for home service robots to take care of the older adults who live alone in their homes. In this article, we proposed a sound-based human activity monitoring (SoHAM) framework by recognizing sound events in a home environment. First, the method of context-aware sound event recognition (CoSER) is developed, which uses contextual information to disambiguate sound events. The locational context of sound events is estimated by fusing the data from the distributed passive infrared (PIR) sensors deployed in the home. A two-level dynamic Bayesian network (DBN) is used to model the intratemporal and intertemporal constraints between the context and the sound events. Second, dynamic sliding time window-based human action recognition (DTW-HaR) is developed to estimate active sound event segments with their labels and durations, then infer actions and their durations. Finally, a conditional random field (CRF) model is proposed to predict human activities based on the recognized action, location, and time. We conducted experiments in our robot-integrated smart home (RiSH) testbed to evaluate the proposed framework. The obtained results show the effectiveness and accuracy of CoSER, action recognition, and human activity monitoring.more » « less
-
In this paper, an urban object detection system via unmanned aerial vehicles (UAVs) is developed to collect real-time traffic information, which can be further utilized in many applications such as traffic monitoring and urban traffic management. The system includes an object detection algorithm, deep learning model training, and deployment on a real UAV. For the object detection algorithm, the Mobilenet-SSD model is applied owing to its lightweight and efficiency, which make it suitable for real-time applications on an onboard microprocessor. For model training, federated learning (FL) is used to protect privacy and increase efficiency with parallel computing. Last, the FL-trained object detection model is deployed on a real UAV for real-time performance testing. The experimental results show that the object detection algorithm can reach a speed of 18 frames per second with good detection performance, which shows the real-time computation ability of a resource-limited edge device and also validates the effectiveness of the developed system.more » « less
-
Pavement surveying and distress mapping is completed by roadway authorities to quantify the topical and structural damage levels for strategic preventative or rehabilitative action. The failure to time the preventative or rehabilitative action and control distress propagation can lead to severe structural and financial loss of the asset requiring complete reconstruction. Continuous and computer-aided surveying measures not only can eliminate human error when analyzing, identifying, defining, and mapping pavement surface distresses, but also can provide a database of road damage patterns and their locations. The database can be used for timely road repairs to gain the maximum durability of the asphalt and the minimum cost of maintenance. This paper introduces an autonomous surveying scheme to collect, analyze, and map the image-based distress data in real time. A descriptive approach is considered for identifying cracks from collected images using a convolutional neural network (CNN) that classifies several types of cracks. Typically, CNN-based schemes require a relatively large processing power to detect desired objects in images in real time. However, the portability objective of this work requires to utilize low-weight processing units. To that end, the CNN training was optimized by the Bayesian optimization algorithm (BOA) to achieve the maximum accuracy and minimum processing time with minimum neural network layers. First, a database consisting of a diverse population of crack distress types such as longitudinal, transverse, and alligator cracks, photographed at multiple angles, was prepared. Then, the database was used to train a CNN whose hyperparameters were optimized using BOA. Finally, a heuristic algorithm is introduced to process the CNN’s output and produce the crack map. The performance of the classifier and mapping algorithm is examined against still images and videos captured by a drone from cracked pavement. In both instances, the proposed CNN was able to classify the cracks with 97% accuracy. The mapping algorithm is able to map a diverse population of surface cracks patterns in real time at the speed of 11.1 km per hour.more » « less