Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Digital transformation of manufacturing industry, Smart Manufacturing, leverages continuous measurement of machines on the shop floor to make effective decisions and improve productivity metrics such as machine uptime and overall equipment efficiency (OEE). However, despite the declining sensor cost, the initial financial and technological skill requirements of digital transformation pose significant barriers for the overwhelming majority (90%) of the manufacturers who are classed as small and medium enterprises (SMEs). To lower this barrier, here we demonstrate an inexpensive (~ $40 per machine), data-efficient solution that extracts part-level productivity metrics of a CNC machine from its total current consumption alone. We introduce the concept of a part’s “fingerprint” and develop a set of methods that allows one to extract the fingerprints and utilize them to monitor each individual manufactured part and their cycle times. Testing on actual production data of over 3 three months in a part-counting task, the algorithms show a good match (96.2% overall accuracy) with manually logged production data is achieved. The presented fingerprint framework is general: it can be extended to multi-sensors, and multi-modal analytics. We expect that such a simple, yet cost-effective, solution will be accessible for a wide range of discrete manufacturers, facilitating the beginning of their digital transformation journey.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sensors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram, demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on an edge computer, enabling real-time remote monitoring.more » « less
-
Abstract In the modern industrial setting, there is an increasing demand for all types of sensors. The demand for both the quantity and quality of sensors is increasing annually. Our research focuses on thin-film nitrate sensors in particular, and it seeks to provide a robust method to monitor the quality of the sensors while reducing the cost of production. We are researching an image-based machine learning method to allow for real-time quality assessment of every sensor in the manufacturing pipeline. It opens up the possibility of real-time production parameter adjustments to enhance sensor performance. This technology has the potential to significantly reduce the cost of quality control and improve sensor quality at the same time. Previous research has proven that the texture of the topical layer (ion-selective membrane (ISM) layer) of the sensor directly correlates with the performance of the sensor. Our method seeks to use the correlation so established to train a learning-based system to predict the performance of any given sensor from a still photo of the sensor active region, i.e. the ISM. This will allow for the real-time assessment of every sensor instead of sample testing. Random sample testing is both costly in time and labor, and therefore, it does not account for all of the individual sensors. Sensor measurement is a crucial portion of the data collection process. To measure the performance of the sensors, the sensors are taken to a specialized lab to be measured for performance. During the measurement process, noise and error are unavoidable; therefore, we generated credibility data based on the performance data to show the reliability of each sensor performance signal at each sample time. In this paper, we propose a machine learning based method to predict sensor performance using image features extracted from the non-contact sensor images guided by the credibility data. This will eliminate the need to test every sensor as it is manufactured, which is not practical in a high-speed roll-to-roll setting, thus truely enabling a certify as built framework.more » « less
-
This study explores factors promoting and inhibiting advanced technology adoption in small- and medium-sized manufacturing firms (SMEs). With AI’s rapid advancement impacting productivity and efficiency across industries, understanding the challenges that SMEs face to remain competitive is crucial. Utilizing the Unified Theory of Acceptance and Use of Technology (UTAUT) model as a theoretical framework, we analyzed managers, engineers, and line workers’ observations on workforce challenges, training needs, and opportunities faced by SMEs to provide insights into their smart manufacturing deployment experiences. Our findings highlight social influence’s role in promoting technology adoption, emphasizing community, shared experiences, and collaborative networks. Conversely, effort expectancy emerged as the largest inhibitor, with concerns about the complexity, time, and resources required for implementation. Individuals were also influenced by factors of facilitating conditions (organizational buy-in, infrastructure, etc.) and performance expectancy on their propensity to adopt advanced technology. By fostering positive organizational environments and communities that share success stories and challenges, we suggest this can mitigate the perceived effort expected to implement new technology. In turn, SMEs can better leverage AI and other advanced technologies to maintain global competitiveness. The research contributes to understanding technology adoption dynamics in manufacturing, providing a foundation for future workforce development and policy initiatives.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
