skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Grid Interconnection Modeling of Inverter Based Resources (IBR) Plant for Transient Analysis
The increase in penetration levels of inverter-based resources (IBRs) is changing the dynamic performance of power grids of different parts of the world. IBRs are now being more and more integrated into the grid at a single connection point as an IBR plant. Due to the complex nature and dynamicity of each inverter model, it is not realistic to build and analyze full complex models of each inverter in the IBR plant. Moreover, simulating a large plant including detailed models of all the IBRs would require high computing resources as well as a long simulation time. This has been the main issue addressed in the new IEEE Std 2800-2022. This paper proposes a novel approach to model an IBR plant, which can capture the transient nature at the plant level, detailed IBR control at the inverter level, interactions of multiple IBR groups in a plant structure, and a collector system connecting the IBRs to the grid. The IBRs in the plant use a voltage source inverter topology combined with a grid-connected filter. The control structure of the IBR includes a cascaded loop control where an inner current control and outer power control are designed in the dq-reference frame, and a closed-loop phase-locked loop is used for the grid synchronization. The mathematical study is conducted first to develop aggregated plant models considering different operating scenarios of active IBRs in an IBR plant. Then, an electromagnetic transient simulation (EMT) model of the plant is developed to investigate the plant’s dynamic performance under different operating scenarios. The performance of the aggregated plant model is compared with that of a detailed plant model to prove the effectiveness of the proposed strategy. The results show that the aggregated EMT simulation model provides almost the same result as the detailed model from the plant perspective while the running time/computation burden is much lower.  more » « less
Award ID(s):
2141067
PAR ID:
10500725
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Energies
Volume:
16
Issue:
7
ISSN:
1996-1073
Page Range / eLocation ID:
3211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increased inverter-based resources (IBRs) connected to the grid, IBR P-Q capability charts are needed, proposed, and developed by the power industry to assure IBR operation efficiency and reliability. This paper presents a comprehensive P-Q capability evaluation for an IBR plant interconnected with the transmission grid. The proposed study considers the impact of different IBR grid-connected filters, IBR vector control implementation in the dq reference frame, and special interconnection nature of IBRs in a plant structure. The models and algorithms developed for the IBR P-Q capability analysis have considered specific IBR constraints that are different from those of a synchronous generator. The paper especially focuses on exploring the P-Q capability characteristics of IBRs and IBR plant at different interconnection points that are important for managing, designing, and controlling IBRs within an IBR plant, and for the development of international standards, such as IEEE P2800, for connecting IBRs to the transmission and distribution grids in a plant structure. 
    more » « less
  2. Voltage control is often time provided at the plant-level control of inverter-based resources (IBR). Addition of energy storage systems in an IBR power plant makes it feasible to have frequency control at the power plant level. While frequency control appears as a simple frequency-power droop control to adjust real power commands to inverter-level controls with measured frequency as an input, care must be taken to avoid interactions among the plant frequency control with communication delays, inverter-level control effects, and the frequency sensor, usually a phase-locked-loop (PLL). This paper present two types of interaction scenarios that makes frequency control design challenging. The first interaction scenario may occur if the frequency control's gain is large, while the second interaction scenario may occur at a small control gain if the plant-level PLL lacks sufficient damping. We contribute to the fundamental understanding of the causation of stability issues due to plant frequency control through the derivation of a simplified feedback system focusing on the frequency and power relationship, and the follow-up frequency-domain analysis for gaining insights. For validation, we also design a data-driven approach to obtain models from data generated from an electromagnetic transient (EMT) simulation testbed. The findings from analysis have all been validated by EMT simulation. Finally, we contribute to mitigating strategies and also the understanding of the role of additional proportional integration power feedback control. This addition has been demonstrated as an efficient stability enhancement strategy to mitigate the effect of communication delay. 
    more » « less
  3. This paper discusses the challenges faced by electric power systems due to the increasing use of inverter-based renewable energy resources (IBRs) operating in grid-following mode (GFL) and the limited support they provide for the grid’s reliability and stability. With increased IBRs connected to the grid, electric utilities are increasingly requiring IBRs to behave like traditional grid-forming (GFM) synchronous generators to provide support for inertia, frequency, voltage, black start capability, and more. The paper focuses on developing GFM inverter technologies with L, LC, and LCL filters and investigates the performance of combined GFM and GFL inverters with different filtering mechanisms when supplying different types of loads. It also emphasizes achieving voltage controllability at the point of common coupling of the GFM with the rest of an AC system. EMT simulation is utilized to investigate the interaction of combined GFM and GFL inverters with different filtering mechanisms. The research results will assist electric utilities in ensuring the reliability and stability of electric power systems in the future. 
    more » « less
  4. As inverter-based resources (IBRs) penetrate power systems, the dynamics become more complex, exhibiting multiple timescales, including electromagnetic transient (EMT) dynamics of power electronic controllers and electromechanical dynamics of synchronous generators. Consequently, the power system model becomes highly stiff, posing a challenge for efficient simulation using existing methods that focus on dynamics within a single timescale. This paper proposes a Heterogeneous Multiscale Method for highly efficient multi-timescale simulation of a power system represented by its EMT model. The new method alternates between the microscopic EMT model of the system and an automatically reduced macroscopic model, varying the step size accordingly to achieve significant acceleration while maintaining accuracy in both fast and slow dynamics of interests. It also incorporates a semi-analytical solution method to enable a more adaptive variable-step mechanism. The new simulation method is illustrated using a two-area system and is then tested on a detailed EMT model of the IEEE 39-bus system. 
    more » « less
  5. Synchronous condensers (SynCons) have been deployed in power grids penetrated by inverter-based resources (IBRs) worldwide to strengthen and stabilize the grids. This paper examines which machine parameters influence IBR weak grid stability and whether excitation systems also play a role. Four types of stability scenarios are examined, including transient stability, oscillations of a few Hz, oscillations near 9 Hz, and dynamic voltage stability. It is shown that the most influential machine parameter varies for the different types of stability issues. While minimization of field winding inductance (typically the major component of the machine transient reactance, X′d) can significantly improve transient stability, voltage stability, and low-frequency oscillatory stability, this parameter has no influence on relatively rapid oscillations. On the other hand, minimizing rotor damper winding inductance (typically the major component of the machine subtransient reactance, X′′d) improves the 9-Hz oscillation stability, but with insignificant influence on the other three types of stability. Furthermore, the excitation system characteristics show negligible influence for any of the scenarios. In addition to the simulation studies, we show how the operational reactances are associated with the machine's dq impedance viewed from the terminal bus and how a SynCon reduces the equivalent grid impedance, thereby improving weak grid stability. Finally, it is concluded that minimization of both transient and subtransient direct-axis reactances should help in a range of stability scenarios, while cautions should be taken when dealing with quadrature-axis transient reactances. 
    more » « less