skip to main content


This content will become publicly available on March 19, 2025

Title: Evolution of sub-ice-shelf channels reveals changes in ocean-driven melt in West Antarctica
Basal channels, which are troughs carved into the undersides of ice shelves by buoyant plumes of water, are modulators of ice-shelf basal melt and structural stability. In this study, we track the evolution of 12 large basal channels beneath ice shelves of the Amundsen and Bellingshausen seas region in West Antarctica using the Landsat record since its start in the 1970s through 2020. We observe examples of channel growth, interactions with ice-shelf features, and systematic changes in sinuosity that give insight into the life cycles of basal channels. We use the last two decades of the record, combined with contemporary ice-flow velocity datasets, to separate channel-path evolution into components related to advection by ice flow and those controlled by other forcings, such as ocean melt or surface accumulation. Our results show that ice-flow-independent lateral channel migration is overwhelmingly to the left when viewed down-flow, suggesting that it is dominated by Coriolis-influenced ocean melt. By applying a model of channel-path evolution dominantly controlled by ice flow and ocean melt, we show that the majority of channels surveyed exhibit non-steady behavior that serves as a novel proxy for increased ocean forcing in West Antarctica starting at least in the early 1970s.  more » « less
Award ID(s):
1929991
NSF-PAR ID:
10500919
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Glaciology
Date Published:
Journal Name:
Journal of Glaciology
ISSN:
0022-1430
Page Range / eLocation ID:
1 to 15
Subject(s) / Keyword(s):
Ice Shelves basal channels glaciology glacier dynamics Antarctica
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ice shelves regulate the ice‐ocean boundary by buttressing the flux of grounded ice into the ocean and are vulnerable to basal melt, which can lead to ice‐shelf thinning and loss of buttressing. Localized, enhanced basal melt can form basal channels, which may impact ice‐shelf stability. Here we investigate the evolution of the Getz Ice Shelf Basal Channel (GISBC) in West Antarctica using a novel suite of geophysical data, including Reference Elevation Model of Antarctica (REMA) digital elevation models, ICESat‐1 and ‐2 altimetry, Operation IceBridge altimetry and radar, and InSAR‐derived ice flow velocities. We describe basal‐channel and ice‐shelf change in both Eulerian and Lagrangian frameworks and document changes in the channel's shape and its lateral motion and estimate basal melting. We find a high degree of spatial and temporal variability in GISBC evolution, with several locations of active basal incision. Incision occurs at rates of up to 22 m a−1at the head of the channel, which is extending toward the grounding line at a rate of ~1 km a−1. Freeboard heights over areas of rapid basal incision are out of hydrostatic equilibrium. The GISBC is also migrating to the northwest, perpendicular to the northeasterly ice flow direction, at an average rate of 70–80 m a−1. The spatiotemporal variability of evolution of the GISBC motivates further characterization of basal channels and their impact on ice‐shelf stability, so that these effects may more readily be incorporated in ice‐ocean models predicting ice flow and sea‐level rise.

     
    more » « less
  2. Abstract Basal channels, which form where buoyant plumes of ocean water and meltwater carve troughs upwards into ice-shelf bases, are widespread on Antarctic ice shelves. The formation of these features modulates ice-shelf basal melt by influencing the flow of buoyant plumes, and influences structural stability through concentration of strain and interactions with fractures. Because of these effects, and because basal channels can change rapidly, on timescales similar to those of ice-shelf evolution, constraining the impacts of basal channels on ice shelves is necessary for predicting future ice-shelf destabilization and retreat. We suggest that future research priorities should include constraining patterns and rates of basal channel change, determining mechanisms and detailed patterns of basal melt, and quantifying the influence that channel-related fractures have on ice-shelf stability. 
    more » « less
  3. Abstract. Ocean-induced basal melting is directly and indirectly responsible for much of the Amundsen Sea Embayment ice loss in recent decades, but the total magnitude and spatiotemporal evolution of this melt is poorly constrained. To address this problem, we generated a record of high-resolution Digital Elevation Models (DEMs) for Pine Island Glacier (PIG) using commercial sub-meter satellite stereo imagery and integrated additional 2002–2015 DEM/altimetry data. We implemented a Lagrangian elevation change (Dh/Dt) framework to estimate ice shelf basal melt rates at 32–256-m resolution. We describe this methodology and consider basal melt rates and elevation change over the PIG shelf and lower catchment from 2008–2015. We document the evolution of Eulerian elevation change (dh/dt) and upstream propagation of thinning signals following the end of rapid grounding line retreat around 2010. Mean full-shelf basal melt rates for the 2008–2015 period were ~82–93 Gt/yr, with ~ 200–250 m/yr basal melt rates within large channels near the grounding line, ~ 10–30 m/yr over the main shelf, and ~ 0–10 m/yr over the North and South shelves, with the notable exception of a small area with rates of ~ 50–100 m/yr near the grounding line of a fast-flowing tributary on the South shelf. The observed basal melt rates show excellent agreement with, and provide context for, in situ basal melt rate observations. We also document the relative melt rates for km-scale basal channels and keels at different locations on the shelf and consider implications for ocean circulation and heat content. These methods and results offer new indirect observations of ice-ocean interaction and constraints on the processes driving sub-shelf melting beneath vulnerable ice shelves in West Antarctica.

     
    more » « less
  4. Abstract

    Ice‐shelf basal channels form due to concentrated submarine melting. They are present in many Antarctic ice shelves and can reduce ice‐shelf structural integrity, potentially destabilizing ice shelves by full‐depth incision. Here, we describe the viscous ice response to a basal channel—secondary flow—which acts perpendicular to the channel axis and is induced by gradients in ice thickness. We use a full‐Stokes ice‐flow model to systematically assess the transient evolution of a basal channel in the presence of melting. Secondary flow increases with channel size and reduces the rate of channel incision, such that linear extrapolation or the Shallow‐Shelf Approximation cannot project future channel evolution. For thick ice shelves (m) secondary flow potentially stabilizes the channel, but is insufficient to significantly delay breakthrough for thinner ice (m). Using synthetic data, we assess the impact of secondary flow when inferring basal‐channel melt rates from satellite observations.

     
    more » « less
  5. Abstract The vertical front of ice shelves represents a topographic barrier for barotropic currents that transport a considerable amount of heat toward the ice shelves. The blocking effect of the ice front on barotropic currents has recently been observed to substantially reduce the heat transport into the cavity beneath the Getz Ice Shelf in West Antarctica. We use an idealized numerical model to study the vorticity dynamics of an externally forced barotropic current at an ice front and the impact of ice shelf thickness, ice front steepness, and ocean stratification on the volume flux entering the cavity. Our simulations show that thicker ice shelves block a larger volume of the barotropic flow, in agreement with geostrophic theory. However, geostrophy breaks locally at the ice front, where relative vorticity and friction become essential for the flow to cross the discontinuity in water column thickness. The flow entering the cavity accelerates and induces high basal melt rates in the frontal region. Tilting the ice front, as undertaken in sigma-coordinate models, reduces this acceleration because the flow is more geostrophic. Viscous processes—typically exaggerated in low-resolution models—break the potential vorticity constraint and bring the flow deeper into the ice shelf cavity. The externally forced barotropic current can only enter the cavity if the stratification is weak, as strong vertical velocities are needed at the ice front to squeeze the water column beneath the ice shelf. If the stratification is strong, vertical velocities are suppressed and the barotropic flow is almost entirely blocked by the ice front. Significance Statement Ice shelves in West Antarctica are thinning, mostly from basal melting through oceanic heat entering the underlying ice shelf cavities. Thinning of ice shelves reduces their ability to buttress the grounded ice resting upstream, leading to sea level rise. To model the ice sheet’s contribution to sea level rise more accurately, the processes governing the oceanic heat flux into the ice shelf cavity must be articulated. This modeling study investigates the dynamics of a depth-independent current approaching the ice shelf; it corroborates previous findings on the blocking of such a current at the ice front. The amount of water that enters the cavity strongly depends on ice shelf thickness and ocean stratification. For a well-mixed ocean, the upper part of the flow can dive underneath the ice shelf and increase basal melting near the ice front. In a stratified ocean, the approaching depth-independent current is almost entirely blocked by the ice front. 
    more » « less