By exploiting min-plus linearity, semiconcavity, and semigroup properties of dynamic programming, a fundamental solution semigroup for a class of approximate finite horizon linear infinite dimensional optimal control problems is constructed. Elements of this fundamental solution semigroup are parameterized by the time horizon, and can be used to approximate the solution of the corresponding finite horizon optimal control problem for any terminal cost. They can also be composed to compute approximations on longer horizons. The value function approximation provided takes the form of a min-plus convolution of a kernel with the terminal cost. A general construction for this kernel is provided, along with a spectral representation for a restricted class of sub-problems.
more »
« less
Min-max and stat game representations for nonlinear optimal control problems
A finite horizon nonlinear optimal control problem is considered for which the associated Hamiltonian satisfies a uniform semiconcavity property with respect to its state and costate variables. It is shown that the value function for this optimal control problem is equivalent to the value of a min-max game, provided the time horizon considered is sufficiently short. This further reduces to maximization of a linear functional over a convex set. It is further proposed that the min-max game can be relaxed to a type of stat (stationary) game, in which no time horizon constraint is involved.
more »
« less
- Award ID(s):
- 1908918
- PAR ID:
- 10500956
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- Proceedings of the American Control Conference
- ISSN:
- 2378-5861
- ISBN:
- 979-8-3503-2806-6
- Page Range / eLocation ID:
- 2733 to 2738
- Subject(s) / Keyword(s):
- Nonlinear, control theory, numerical methods, game theory
- Format(s):
- Medium: X
- Location:
- San Diego, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper studies an optimal stochastic impulse control problem in a finite time horizon with a decision lag, by which we mean that after an impulse is made, a fixed number units of time has to be elapsed before the next impulse is allowed to be made. The continuity of the value function is proved. A suitable version of dynamic programming principle is established, which takes into account the dependence of state process on the elapsed time. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is derived, which exhibits some special feature of the problem. The value function of this optimal impulse control problem is characterized as the unique viscosity solution to the corresponding HJB equation. An optimal impulse control is constructed provided the value function is given. Moreover, a limiting case with the waiting time approaching 0 is discussed.more » « less
-
Abstract Given a graph of degree over vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth , we develop a local message passing algorithm whose complexity is , and that achieves near optimal cut values among all ‐local algorithms. Focusing on max‐cut, the algorithm constructs a cut of value , where is the value of the Parisi formula from spin glass theory, and (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, that is, graphs whose girth becomes after removing a small fraction of vertices. Earlier work established that, for random ‐regular graphs, the typical max‐cut value is . Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max‐cut, and nearly maximum min‐bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near‐Ramanujan property of random regular graphs.more » « less
-
Motivated by various distributed control applications, we consider a linear system with Gaussian noise observed by multiple sensors which transmit measurements over a dynamic lossy network. We characterize the stationary optimal sensor scheduling policy for the finite horizon, discounted, and long-term average cost problems and show that the value iteration algorithm converges to a solution of the average cost problem. We further show that the suboptimal policies provided by the rolling horizon truncation of the value iteration also guarantee geometric ergodicity and provide near-optimal average cost. Lastly, we provide qualitative characterizations of the multidimensional set of measurement loss rates for which the system is stabilizable for a static network, significantly extending earlier results on intermittent observations.more » « less
-
Nonzero sum games typically have multiple Nash equilibriums (or no equilibrium), and unlike the zero-sum case, they may have different values at different equilibriums. Instead of focusing on the existence of individual equilibriums, we study the set of values over all equilibriums, which we call the set value of the game. The set value is unique by nature and always exists (with possible value [Formula: see text]). Similar to the standard value function in control literature, it enjoys many nice properties, such as regularity, stability, and more importantly, the dynamic programming principle. There are two main features in order to obtain the dynamic programming principle: (i) we must use closed-loop controls (instead of open-loop controls); and (ii) we must allow for path dependent controls, even if the problem is in a state-dependent (Markovian) setting. We shall consider both discrete and continuous time models with finite time horizon. For the latter, we will also provide a duality approach through certain standard PDE (or path-dependent PDE), which is quite efficient for numerically computing the set value of the game.more » « less
An official website of the United States government

