Abstract Savanna ecosystems contribute ~30% of global net primary production (NPP), but they vary substantially in composition and function, specifically in the understory, which can result in complex responses to environmental fluctuations. We tested how understory phenology and its contribution to ecosystem productivity within a longleaf pine ecosystem varied at two ends of a soil moisture gradient (mesic and xeric). We used the Normalized Difference Vegetation Index (NDVI) of the understory and ecosystem productivity estimates from eddy covariance systems to understand how variation in the understory affected overall ecosystem recovery from disturbances (drought and fire). We found that the mesic site recovered more rapidly from the disturbance of fire, compared to the xeric site, indicated by a faster increase inNDVI. During drought, understoryNDVIat the xeric site decreased less compared to the mesic site, suggesting adaptation to lower soil moisture conditions. Our results also show large variation within savanna ecosystems in the contribution of the understory to ecosystem productivity and recovery, highlighting the critical need to further subcategorize global savanna ecosystems by their structural features, to accurately predict their contribution to global estimates ofNPP.
more »
« less
Longleaf pine savannas reveal biases in current understanding of savanna biogeography
Abstract Biased understanding of savanna biogeographyGrasslands and savannas exist across a wide range of climates. Mesic savannas, with highly variable tree densities, are particularly misunderstood and understudied in comparison to arid and semi‐arid savannas. North America contains historically extensive mesic savannas dominated by longleaf pine. Longleaf pine savannas may have once been the largest savanna type on North America, yet these ecosystems have been overlooked in global syntheses. Excluding these “Forgotten Ecosystems” from global syntheses biases our understanding of savanna biogeography and distribution. Evolutionary history and distinct climate of longleaf savannasWe assessed the evolutionary history and biogeography of longleaf pine savannas. We then harmonize plot data from longleaf savannas with plot data from valuable existing global synthesis of savannas on other continents. We show that longleaf pine savannas occur in a strikingly distinct climate space compared to savannas on Africa, Australia, and South America, and are unique in having wide ranging tree basal areas. Future directionsGrass‐dominated ecosystems are increasingly recognized as being ancient and biologically diverse, yet threatened and undervalued. A new synthesis of savanna ecosystems considering their full range of distributions is needed to understand their ecology and conservation status. Interestingly, the closest analogues to North American savannas and their relatives in Mesoamerica and the Caribbean may be Asian savannas, which also contain mesic fire‐driven pine savannas and have been similarly neglected in existing global syntheses.
more »
« less
- Award ID(s):
- 1926431
- PAR ID:
- 10500961
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 32
- Issue:
- 11
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- 2047 to 2052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Pyrogenic savannas with a tree–grassland ‘matrix’ experience frequent fires (i.e. every 1–3 yr). Aboveground responses to frequent fires have been well studied, but responses of fungal litter decomposers, which directly affect fuels, remain poorly known. We hypothesized that each fire reorganizes belowground communities and slows litter decomposition, thereby influencing savanna fuel dynamics.In a pine savanna, we established patches near and away from pines that were either burned or unburned in that year. Within patches, we assessed fungal communities and microbial decomposition of newly deposited litter. Soil variables and plant communities were also assessed as proximate drivers of fungal communities.Fungal communities, but not soil variables or vegetation, differed substantially between burned and unburned patches. Saprotrophic fungi dominated in unburned patches but decreased in richness and relative abundance after fire. Differences in fungal communities with fire were greater in litter than in soils, but unaffected by pine proximity. Litter decomposed more slowly in burned than in unburned patches.Fires drive shifts between fire‐adapted and sensitive fungal taxa in pine savannas. Slower fuel decomposition in accordance with saprotroph declines should enhance fuel accumulation and could impact future fire characteristics. Thus, fire reorganization of fungal communities may enhance persistence of these fire‐adapted ecosystems.more » « less
-
The longleaf pine ( Pinus palustris Mill.) and related ecosystem is an icon of the southeastern United States (US). Once covering an estimated 37 million ha from Texas to Florida to Virginia, the near-extirpation of, and subsequent restoration efforts for, the species has been well-documented over the past ca. 100 years. Although longleaf pine is one of the longest-lived tree species in the southeastern US—with documented ages of over 400 years—its use has not been reviewed in the field of dendrochronology. In this paper, we review the utility of longleaf pine tree-ring data within the applications of four primary, topical research areas: climatology and paleoclimate reconstruction, fire history, ecology, and archeology/cultural studies. Further, we highlight knowledge gaps in these topical areas, for which we introduce the Longleaf Tree-Ring Network (LTRN). The overarching purpose of the LTRN is to coalesce partners and data to expand the scientific use of longleaf pine tree-ring data across the southeastern US. As a first example of LTRN analytics, we show that the development of seasonwood chronologies (earlywood width, latewood width, and total width) enhances the utility of longleaf pine tree-ring data, indicating the value of these seasonwood metrics for future studies. We find that at 21 sites distributed across the species’ range, latewood width chronologies outperform both their earlywood and total width counterparts in mean correlation coefficient (RBAR = 0.55, 0.46, 0.52, respectively). Strategic plans for increasing the utility of longleaf pine dendrochronology in the southeastern US include [1] saving remnant material ( e.g., stumps, logs, and building construction timbers) from decay, extraction, and fire consumption to help extend tree-ring records, and [2] developing new chronologies in LTRN spatial gaps to facilitate broad-scale analyses of longleaf pine ecosystems within the context of the topical groups presented.more » « less
-
Abstract Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems.Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas.The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi‐arid savannas (400–800‐mm rainfall) and soils data are mostly lacking, which makes disentangling environmental constraints a challenge and priority for future research.Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant‐soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnifying herbivore impacts.Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today.Current wildlife impacts are dominated by small‐bodied mixed feeders, which will likely continue into the future, but the magnitude of top‐down control may also depend on changing climate, fire and atmospheric CO2.Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence‐based hypotheses of the past and future impacts of herbivores on savanna vegetation.more » « less
-
Abstract The consequences of land‐use change for savanna biodiversity remain undocumented in most regions of tropical Asia. One such region is western Maharashtra, India, where old‐growth savannas occupy a broad rainfall gradient and are increasingly rare due to agricultural conversion and afforestation.To understand the consequences of land‐use change, we sampled herbaceous plant communities of old‐growth savannas and three alternative land‐use types: tree plantations, tillage agriculture and agricultural fallows (n = 15 sites per type). Study sites spanned 457 to 1954 mm of mean annual precipitation—corresponding to the typical rainfall range of mesic savannas globally.Across the rainfall gradient, we found consistent declines in old‐growth savanna plant communities due to land‐use change. Local‐scale native species richness dropped from a mean of 12 species/m2in old‐growth savannas to 8, 6 and 3 species/m2in tree plantations, fallows and tillage agriculture, respectively. Cover of native plants declined from a mean of 49% in old‐growth savannas to 27% in both tree plantations and fallows, and 4% in tillage agriculture. Reduced native cover coincided with increased cover of invasive species in tree plantations (18%), fallows (18%) and tillage agriculture (3%).In analyses of community composition, tillage agriculture was most dissimilar to old‐growth savannas, while tree plantations and fallows showed intermediate dissimilarity. These compositional changes were driven partly by the loss of characteristic savanna species: 65 species recorded in old‐growth savannas were absent in other land uses. Indicator analysis revealed 21 old‐growth species, comprised mostly of native savanna specialists. Indicators of tree plantations (nine species) and fallows (13 species) were both invasive and native species, while the two indicators of tillage agriculture were invasive. As reflective of declines in savanna communities, mean native perennial graminoid cover of 27% in old‐growth savannas dropped to 9%, 7%, and 0.1% in tree plantations, fallows and tillage agriculture, respectively.Synthesis. Agricultural conversion and afforestation of old‐growth savannas in India destroys and degrades herbaceous plant communities that do not spontaneously recover on fallowed land. Efforts to conserve India's native biodiversity should encompass the country's widespread savanna biome and seek to limit conversion of irreplaceable old‐growth savannas.more » « less
An official website of the United States government

