Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Biased understanding of savanna biogeographyGrasslands and savannas exist across a wide range of climates. Mesic savannas, with highly variable tree densities, are particularly misunderstood and understudied in comparison to arid and semi‐arid savannas. North America contains historically extensive mesic savannas dominated by longleaf pine. Longleaf pine savannas may have once been the largest savanna type on North America, yet these ecosystems have been overlooked in global syntheses. Excluding these “Forgotten Ecosystems” from global syntheses biases our understanding of savanna biogeography and distribution. Evolutionary history and distinct climate of longleaf savannasWe assessed the evolutionary history and biogeography of longleaf pine savannas. We then harmonize plot data from longleaf savannas with plot data from valuable existing global synthesis of savannas on other continents. We show that longleaf pine savannas occur in a strikingly distinct climate space compared to savannas on Africa, Australia, and South America, and are unique in having wide ranging tree basal areas. Future directionsGrass‐dominated ecosystems are increasingly recognized as being ancient and biologically diverse, yet threatened and undervalued. A new synthesis of savanna ecosystems considering their full range of distributions is needed to understand their ecology and conservation status. Interestingly, the closest analogues to North American savannas and their relatives in Mesoamerica and the Caribbean may be Asian savannas, which also contain mesic fire‐driven pine savannas and have been similarly neglected in existing global syntheses.more » « less
-
Abstract Hyperspectral remote sensing has the potential to map numerous attributes of the Earth’s surface, including spatial patterns of biological diversity. Grasslands are one of the largest biomes on Earth. Accurate mapping of grassland biodiversity relies on spectral discrimination of endmembers of species or plant functional types. We focused on spectral separation of grass lineages that dominate global grassy biomes: Andropogoneae (C4), Chloridoideae (C4), and Pooideae (C3). We examined leaf reflectance spectra (350–2,500 nm) from 43 grass species representing these grass lineages from four representative grassland sites in the Great Plains region of North America. We assessed the utility of leaf reflectance data for classification of grass species into three major lineages and by collection site. Classifications had very high accuracy (94%) that were robust to site differences in species and environment. We also show an information loss using multispectral sensors, that is, classification accuracy of grass lineages using spectral bands provided by current multispectral satellites is much lower (accuracy of 85.2% and 61.3% using Sentinel 2 and Landsat 8 bands, respectively). Our results suggest that hyperspectral data have an exciting potential for mapping grass functional types as informed by phylogeny. Leaf‐level hyperspectral separability of grass lineages is consistent with the potential increase in biodiversity and functional information content from the next generation of satellite‐based spectrometers.more » « less
-
Abstract Plants with the C4photosynthesis pathway typically respond to climate change differently from more common C3-type plants, due to their distinct anatomical and biochemical characteristics. These different responses are expected to drive changes in global C4and C3vegetation distributions. However, current C4vegetation distribution models may not predict this response as they do not capture multiple interacting factors and often lack observational constraints. Here, we used global observations of plant photosynthetic pathways, satellite remote sensing, and photosynthetic optimality theory to produce an observation-constrained global map of C4vegetation. We find that global C4vegetation coverage decreased from 17.7% to 17.1% of the land surface during 2001 to 2019. This was the net result of a reduction in C4natural grass cover due to elevated CO2favoring C3-type photosynthesis, and an increase in C4crop cover, mainly from corn (maize) expansion. Using an emergent constraint approach, we estimated that C4vegetation contributed 19.5% of global photosynthetic carbon assimilation, a value within the range of previous estimates (18–23%) but higher than the ensemble mean of dynamic global vegetation models (14 ± 13%; mean ± one standard deviation). Our study sheds insight on the critical and underappreciated role of C4plants in the contemporary global carbon cycle.more » « less
-
Abstract Evolutionary relatedness underlies patterns of functional diversity in the natural world. Hyperspectral remote sensing has the potential to detect these patterns in plants through inherited patterns of leaf reflectance spectra. We collected leaf reflectance data across the California flora from plants grown in a common garden. Regions of the reflectance spectra vary in the depth and strength of phylogenetic signal. We also show that these differences are much greater than variation due to the geographic origin of the plant. At the phylogenetic extent of the California flora, spectral variation explained by the combination of ecotypic variation (divergent evolution) and convergent evolution of disparate lineages was minimal (3%–7%) but statistically significant. Interestingly, at the extent of a single genus (Arctostaphylos) no unique variation could be attributed to geographic origin. However, up to 18% of the spectral variation amongArctostaphylosindividuals was shared between phylogeny and intraspecific variation stemming from ecotypic differences (i.e., geographic origin). Future studies could conduct more structured experiments (e.g., transplants or observations along environmental gradients) to disentangle these sources of variation and include other intraspecific variation (e.g., plasticity). We constrain broad‐scale spectral variability due to ecotypic sources, providing further support for the idea that phylogenetic clusters of species might be detectable through remote sensing. Phylogenetic clusters could represent a valuable dimension of biodiversity monitoring and detection.more » « less
-
Summary Evolutionary history plays a key role driving patterns of trait variation across plant species. For scaling and modeling purposes, grass species are typically organized into C3vs C4plant functional types (PFTs). Plant functional type groupings may obscure important functional differences among species. Rather, grouping grasses by evolutionary lineage may better represent grass functional diversity.We measured 11 structural and physiological traitsin situfrom 75 grass species within the North American tallgrass prairie. We tested whether traits differed significantly among photosynthetic pathways or lineages (tribe) in annual and perennial grass species.Critically, we found evidence that grass traits varied among lineages, including independent origins of C4photosynthesis. Using a rigorous model selection approach, tribe was included in the top models for five of nine traits for perennial species. Tribes were separable in a multivariate and phylogenetically controlled analysis of traits, owing to coordination of important structural and ecophysiological characteristics.Our findings suggest grouping grass species by photosynthetic pathway overlooks variation in several functional traits, particularly for C4species. These results indicate that further assessment of lineage‐based differences at other sites and across other grass species distributions may improve representation of C4species in trait comparison analyses and modeling investigations.more » « less
-
Abstract Plants are critical mediators of terrestrial mass and energy fluxes, and their structural and functional traits have profound impacts on local and global climate, biogeochemistry, biodiversity, and hydrology. Yet, Earth System Models (ESMs), our most powerful tools for predicting the effects of humans on the coupled biosphere–atmosphere system, simplify the incredible diversity of land plants into a handful of coarse categories of “Plant Functional Types” (PFTs) that often fail to capture ecological dynamics such as biome distributions. The inclusion of more realistic functional diversity is a recognized goal for ESMs, yet there is currently no consistent, widely accepted way to add diversity to models, that is, to determine what new PFTs to add and with what data to constrain their parameters. We review approaches to representing plant diversity in ESMs and draw on recent ecological and evolutionary findings to present an evolution‐based functional type approach for further disaggregating functional diversity. Specifically, the prevalence of niche conservatism, or the tendency of closely related taxa to retain similar ecological and functional attributes through evolutionary time, reveals that evolutionary relatedness is a powerful framework for summarizing functional similarities and differences among plant types. We advocate that Plant Functional Types based on dominant evolutionary lineages (“Lineage Functional Types”) will provide an ecologically defensible, tractable, and scalable framework for representing plant diversity in next‐generation ESMs, with the potential to improve parameterization, process representation, and model benchmarking. We highlight how the importance of evolutionary history for plant function can unify the work of disparate fields to improve predictive modeling of the Earth system.more » « less
-
Abstract Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high‐resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground‐measured LAI (r = 0.32) and AOP Total Biomass and ground‐measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least‐squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP‐derived data products should not be used without extensive ground‐based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field‐based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in‐situ field measurements across a diversity of sites.more » « less
-
Biogeographic history can set initial conditions for vegetation community assemblages that determine their climate responses at broad extents that land surface models attempt to forecast. Numerous studies have indicated that evolutionarily conserved biochemical, structural, and other functional attributes of plant species are captured in visible-to-short wavelength infrared, 400 to 2,500 nm, reflectance properties of vegetation. Here, we present a remotely sensed phylogenetic clustering and an evolutionary framework to accommodate spectra, distributions, and traits. Spectral properties evolutionarily conserved in plants provide the opportunity to spatially aggregate species into lineages (interpreted as “lineage functional types” or LFT) with improved classification accuracy. In this study, we use Airborne Visible/Infrared Imaging Spectrometer data from the 2013 Hyperspectral Infrared Imager campaign over the southern Sierra Nevada, California flight box, to investigate the potential for incorporating evolutionary thinking into landcover classification. We link the airborne hyperspectral data with vegetation plot data from 1372 surveys and a phylogeny representing 1,572 species. Despite temporal and spatial differences in our training data, we classified plant lineages with moderate reliability (Kappa = 0.76) and overall classification accuracy of 80.9%. We present an assessment of classification error and detail study limitations to facilitate future LFT development. This work demonstrates that lineage-based methods may be a promising way to leverage the new-generation high-resolution and high return-interval hyperspectral data planned for the forthcoming satellite missions with sparsely sampled existing ground-based ecological data.more » « less