skip to main content

Title: Rejuvenation of degraded Zener diodes with the electron wind force

In this study, we explore the rejuvenation of a Zener diode degraded by high electrical stress, leading to a leftward shift, and broadening of the Zener breakdown voltage knee, alongside a 57% reduction in forward current. We employed a non-thermal annealing method involving high-density electric pulses with short pulse width and low frequency. The annealing process took <30 s at near-ambient temperature. Raman spectroscopy supports the electrical characterization, showing enhancement in crystallinity to explain the restoration of the breakdown knee followed by improvement in forward current by ∼85%.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.35848
Date Published:
Journal Name:
Applied Physics Express
Medium: X Size: Article No. 047001
["Article No. 047001"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The ultra-wide bandgap of Al-rich AlGaN is expected to support a significantly larger breakdown field compared to GaN, but the reported performance thus far has been limited by the use of foreign substrates. In this Letter, the material and electrical properties of Al 0.85 Ga 0.15 N/Al 0.6 Ga 0.4 N high electron mobility transistors (HEMT) grown on a 2-in. single crystal AlN substrate are investigated, and it is demonstrated that native AlN substrates unlock the potential for Al-rich AlGaN to sustain large fields in such devices. We further study how Ohmic contacts made directly to a Si-doped channel layer reduce the knee voltage and increase the output current density. High-quality AlGaN growth is confirmed via scanning transmission electron microscopy, which also reveals the absence of metal penetration at the Ohmic contact interface and is in contrast to established GaN HEMT technology. Two-terminal mesa breakdown characteristics with 1.3  μm separation possess a record-high breakdown field strength of ∼11.5 MV/cm for an undoped Al 0.6 Ga 0.4 N-channel layer. The breakdown voltages for three-terminal devices measured with gate-drain distances of 4 and 9  μm are 850 and 1500 V, respectively. 
    more » « less
  2. In this work, we demonstrate the rejuvenation of Ti/4H-SiC Schottky barrier diodes after forward current-induced degradation, at room temperature and in a few seconds, by exploiting the physics of high-energy electron interactions with defects. The diodes were intentionally degraded to a 42% decrease in forward current and a 9% increase in leakage current through accelerated electrical stressing. The key feature of our proposed rejuvenation process is very high current density electrical pulsing with low frequency and duty cycle to suppress any temperature rise. The primary stimulus is, therefore, the electron wind force, which is derived from the loss of the momentum of the high energy electrons upon collision with the defects. Such defect-specific or “just in location” mobilization of atoms allows a significant decrease in defect concentration, which is not possible with conventional thermal annealing that requires higher temperatures and longer times. We show evidence of rejuvenation with additional improvement in leakage current (16%) and forward current (38%) beyond the pristine condition. Transmission electron microscopy, geometric phase analysis, Raman spectroscopy, and energy dispersive x-ray-spectroscopy reveal the enhancement of defects and interfaces. The ultrafast and room temperature process has the potential for rejuvenating electronic devices operating in high power and harsh environmental conditions. 
    more » « less
  3. We present a review of the published experimental and simulation radiation damage results in Ga 2 O 3 . All of the polytypes of Ga 2 O 3 are expected to show similar radiation resistance as GaN and SiC, considering their average bond strengths. However, this is not enough to explain the orders of magnitude difference of the relative resistance to radiation damage of these materials compared to GaAs and dynamic annealing of defects is much more effective in Ga 2 O 3 . It is important to examine the effect of all types of radiation, given that Ga 2 O 3 devices will potentially be deployed both in space and terrestrial applications. Octahedral gallium monovacancies are the main defects produced under most radiation conditions because of the larger cross-section for interaction compared to oxygen vacancies. Proton irradiation introduces two main paramagnetic defects in Ga 2 O 3 , which are stable at room temperature. Charge carrier removal can be explained by Fermi-level pinning far from the conduction band minimum due to gallium interstitials (Ga i ), vacancies (V Ga ), and antisites (Ga O ). One of the most important parameters to establish is the carrier removal rate for each type of radiation, since this directly impacts the current in devices such as transistors or rectifiers. When compared to the displacement damage predicted by the Stopping and Range of Ions in Matter(SRIM) code, the carrier removal rates are generally much lower and take into account the electrical nature of the defects created. With few experimental or simulation studies on single event effects (SEE) in Ga 2 O 3 , it is apparent that while other wide bandgap semiconductors like SiC and GaN are robust against displacement damage and total ionizing dose, they display significant vulnerability to single event effects at high Linear Energy Transfer (LET) and at much lower biases than expected. We have analyzed the transient response of β -Ga 2 O 3 rectifiers to heavy-ion strikes via TCAD simulations. Using field metal rings improves the breakdown voltage and biasing those rings can help control the breakdown voltage. Such biased rings help in the removal of the charge deposited by the ion strike. 
    more » « less
  4. Abstract

    Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 105A cm−2pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping.

    more » « less
  5. Abstract

    Heat transport across vertical interfaces of heterogeneous 2D materials is usually governed by the weak Van der Waals interactions of the surface‐terminating atoms. Such interactions play a significant role in thermal transport across transition metal carbide and nitride (MXene) atomic layers due to their hydrophilic nature and variations in surface terminations. Here, the metallicity of atomically thin Ti3C2TzMXene, which is also verified by scanning tunneling spectroscopy for the first time, is exploited to develop a self‐heating/self‐sensing platform to carry out direct‐current annealing experiments in high (<10−8bar) vacuum, while simultaneously evaluating the interfacial heat transport across a Ti3C2Tz/SiO2interface. At room temperature, the thermal boundary conductance (TBC) of this interface is found, on average, to increase from 10 to 27 MW m−2K−1upon current annealing up to the breakdown limit. In situ heating X‐ray diffraction and X‐ray photo‐electron spectroscopy reveal that the TBC values are mainly affected by interlayer and interface spacing due to the removal of absorbents, while the effect of surface termination is negligible. This study provides key insights into understanding energy transport in MXene nanostructures and other 2D material systems.

    more » « less