skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of electrical hazards from overhead power lines on urban search and rescue operations during extreme flood events
Accurate flood forecasting and efficient emergency response operations are vital, especially in the case of urban flash floods. The dense distribution of power lines in urban areas significantly impacts search and rescue operations during extreme flood events. However, no existing emergency response frameworks have incorporated the impacts of overhead power lines on lifeboat rescue operations. This study aims to determine the necessity and feasibility of incorporating overhead power line information into an emergency response framework using Manville, New Jersey during Hurricane Ida as a test bed. We propose an integrated framework, which includes a building-scale flood model, urban point cloud data, a human vulnerability model, and network analysis, to simulate rescue operation feasibility during Hurricane Ida. Results reveal that during the most severe point of the flood event, 46% of impacted buildings became nonrescuable due to complete isolation from the road network, and a significant 67.7% of the municipality’s areas that became dangerous for pedestrians also became inaccessible to rescue boats due to overhead power line obstruction. Additionally, we identify a continuous 10-hour period during which an average of 43.4% of the 991 impacted buildings faced complete isolation. For these structures, early evacuation emerges as the sole means to prevent isolation. This research highlights the pressing need to consider overhead power lines in emergency response planning to ensure more effective and targeted flood resilience measures for urban areas facing increasingly frequent extreme precipitation events.  more » « less
Award ID(s):
2103754
PAR ID:
10501215
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Disaster Risk Reduction
Volume:
104
ISSN:
2212-4209
Page Range / eLocation ID:
104359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During flash flooding, quick and effective rescue operations are crucial to minimizing harm to vulnerable communities. While much research focused on emergency response and evacuation, few studies address how overhead powerline obstructions impact rescue operations. Additionally, existing research on vulnerable communities often emphasizes long-term flood mitigation and recovery but less so on immediate responses. To ensure rapid and equitable flood rescue operations, this study derives an integrated metric to quantify rescue demands that incorporate rescue efficiency, community flood severity, and social vulnerability. In detail, rescue efficiency is calculated by analyzing a network that captures the geospatial interdependencies between the residential buildings' road networks and overhead power lines; community flood severity is quantified as the percentage of building damage resulting from flood impacts; and social vulnerability is an integrated indication of key household composition factors (e.g., elders, single parents, and minorities). Based on this metric, a systematic step is designed to suggest the sequence of rescue operations and the strategies for distributing rescue lifeboats at emergency facilities. The applicability and feasibility of the proposed approach were demonstrated using lifeboat rescue operations in Manville, New Jersey, during Hurricane Ida. This study calculates dynamic changes in rescue loads of all emergency facilities and then finds the optimal strategies for distributing lifeboats. The results highlight the significant impact of overhead power line obstructions on the optimal rescue lifeboat distribution. Additionally, the results suggest prioritizing emergency evacuation for socially vulnerable households in Manville township. Practically, the generated rescue sequence and rescue lifeboat distribution are expected to help emergency response agencies perform effective and rapid rescue operations. 
    more » « less
  2. Extensive dampness and mold growth in buildings are some of the most common, yet overlooked indirect impacts of floods, which adversely affect human respiratory health, particularly among asthmatic individuals. There is currently a lack of understanding on interrelationships among flood characteristics and drivers, building and HVAC system properties (e.g., ventilation rates), human behaviors (e.g., time spent in homes) and vulnerability to mold growth (e.g., asthma symptoms) in the built environment, particularly in residential buildings. This project collects data in the aftermath of two recent catastrophic hurricane events - Ida and Ian - from affected residential buildings to study the relationships among flood characteristics, mold growth, building properties, human behavior and human respiratory health. Our interdisciplinary team uses survey questionnaires, laboratory experiments and machine learning modeling to answer the following scientific questions: (1) what flood characteristics and drivers, building and HVAC system properties and human behaviors cause higher levels of mold growth in residential buildings? and (2) how does living in submerged or water-damaged houses after floods affect asthma symptoms among the residents? The developed empirical database and identified relationships can be used to guide building designers and occupational health scientists to establish resilient indoor environments, provide a foundation to develop flood-induced mold growth and asthma risk models, assist public health officials and emergency managers to have a better understanding of indirect health-related impacts of floods and support the development of timely strategies for disaster management in population centers. 
    more » « less
  3. Extensive dampness and mold growth in buildings are some of the most common, yet overlooked indirect impacts of floods, which adversely affect human respiratory health, particularly among asthmatic individuals. There is currently a lack of understanding on interrelationships among flood characteristics and drivers, building and HVAC system properties (e.g., ventilation rates), human behaviors (e.g., time spent in homes) and vulnerability to mold growth (e.g., asthma symptoms) in the built environment, particularly in residential buildings. This project collects data in the aftermath of two recent catastrophic hurricane events - Ida and Ian - from affected residential buildings to study the relationships among flood characteristics, mold growth, building properties, human behavior and human respiratory health. Our interdisciplinary team uses survey questionnaires, laboratory experiments and machine learning modeling to answer the following scientific questions: (1) what flood characteristics and drivers, building and HVAC system properties and human behaviors cause higher levels of mold growth in residential buildings? and (2) how does living in submerged or water-damaged houses after floods affect asthma symptoms among the residents? The developed empirical database and identified relationships can be used to guide building designers and occupational health scientists to establish resilient indoor environments, provide a foundation to develop flood-induced mold growth and asthma risk models, assist public health officials and emergency managers to have a better understanding of indirect health-related impacts of floods and support the development of timely strategies for disaster management in population centers. 
    more » « less
  4. Extensive dampness and mold growth in buildings are some of the most common, yet overlooked indirect impacts of floods, which adversely affect human respiratory health, particularly among asthmatic individuals. There is currently a lack of understanding on interrelationships among flood characteristics and drivers, building and HVAC system properties (e.g., ventilation rates), human behaviors (e.g., time spent in homes) and vulnerability to mold growth (e.g., asthma symptoms) in the built environment, particularly in residential buildings. This project collects data in the aftermath of two recent catastrophic hurricane events - Ida and Ian - from affected residential buildings to study the relationships among flood characteristics, mold growth, building properties, human behavior and human respiratory health. Our interdisciplinary team uses survey questionnaires, laboratory experiments and machine learning modeling to answer the following scientific questions: (1) what flood characteristics and drivers, building and HVAC system properties and human behaviors cause higher levels of mold growth in residential buildings? and (2) how does living in submerged or water-damaged houses after floods affect asthma symptoms among the residents? The developed empirical database and identified relationships can be used to guide building designers and occupational health scientists to establish resilient indoor environments, provide a foundation to develop flood-induced mold growth and asthma risk models, assist public health officials and emergency managers to have a better understanding of indirect health-related impacts of floods and support the development of timely strategies for disaster management in population centers. 
    more » « less
  5. Florida's emergency relief operations were significantly affected by recent hurricanes such as Hermine and Irma that caused massive roadway and power system distributions. During these recent devastating hurricanes, the problems associated with providing accessibility and safety became even more challenging, especially for those vulnerable communities and disadvantaged segments of the society, such as aging populations were considered - that is, those who need and benefit from the emergency services the most. This complexity is magnified in states like Florida, considering the diverse physical, cognitive, economic and demographic variation of its population. As such, with a major focus on real-life data on roadway closures and power outages for the Hurricane Hermine, combined resilience (co-resilience) of emergency response facilities in the City of Tallahassee, the capital of Florida, was extensively studied based on the (a) temporal reconstruction of the reported power outages and roadway closures, and (b) development of co-resilience metrics to identify and visually map the most affected power system feeders and transportation network locations. Results show those regions with reduced emergency response facility accessibility, and those power lines and roadways under a disruption risk after Hermine hit Tallahassee. 
    more » « less