skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Hurricanes on Indoor Mold and Asthma:Subtitle
Extensive dampness and mold growth in buildings are some of the most common, yet overlooked indirect impacts of floods, which adversely affect human respiratory health, particularly among asthmatic individuals. There is currently a lack of understanding on interrelationships among flood characteristics and drivers, building and HVAC system properties (e.g., ventilation rates), human behaviors (e.g., time spent in homes) and vulnerability to mold growth (e.g., asthma symptoms) in the built environment, particularly in residential buildings. This project collects data in the aftermath of two recent catastrophic hurricane events - Ida and Ian - from affected residential buildings to study the relationships among flood characteristics, mold growth, building properties, human behavior and human respiratory health. Our interdisciplinary team uses survey questionnaires, laboratory experiments and machine learning modeling to answer the following scientific questions: (1) what flood characteristics and drivers, building and HVAC system properties and human behaviors cause higher levels of mold growth in residential buildings? and (2) how does living in submerged or water-damaged houses after floods affect asthma symptoms among the residents? The developed empirical database and identified relationships can be used to guide building designers and occupational health scientists to establish resilient indoor environments, provide a foundation to develop flood-induced mold growth and asthma risk models, assist public health officials and emergency managers to have a better understanding of indirect health-related impacts of floods and support the development of timely strategies for disaster management in population centers.  more » « less
Award ID(s):
2203180
PAR ID:
10518871
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
Mold and Asthma Data Collection and Preprocessing
Format(s):
Medium: X
Institution:
Florida State University
Sponsoring Org:
National Science Foundation
More Like this
  1. Extensive dampness and mold growth in buildings are some of the most common, yet overlooked indirect impacts of floods, which adversely affect human respiratory health, particularly among asthmatic individuals. There is currently a lack of understanding on interrelationships among flood characteristics and drivers, building and HVAC system properties (e.g., ventilation rates), human behaviors (e.g., time spent in homes) and vulnerability to mold growth (e.g., asthma symptoms) in the built environment, particularly in residential buildings. This project collects data in the aftermath of two recent catastrophic hurricane events - Ida and Ian - from affected residential buildings to study the relationships among flood characteristics, mold growth, building properties, human behavior and human respiratory health. Our interdisciplinary team uses survey questionnaires, laboratory experiments and machine learning modeling to answer the following scientific questions: (1) what flood characteristics and drivers, building and HVAC system properties and human behaviors cause higher levels of mold growth in residential buildings? and (2) how does living in submerged or water-damaged houses after floods affect asthma symptoms among the residents? The developed empirical database and identified relationships can be used to guide building designers and occupational health scientists to establish resilient indoor environments, provide a foundation to develop flood-induced mold growth and asthma risk models, assist public health officials and emergency managers to have a better understanding of indirect health-related impacts of floods and support the development of timely strategies for disaster management in population centers. 
    more » « less
  2. Extensive dampness and mold growth in buildings are some of the most common, yet overlooked indirect impacts of floods, which adversely affect human respiratory health, particularly among asthmatic individuals. There is currently a lack of understanding on interrelationships among flood characteristics and drivers, building and HVAC system properties (e.g., ventilation rates), human behaviors (e.g., time spent in homes) and vulnerability to mold growth (e.g., asthma symptoms) in the built environment, particularly in residential buildings. This project collects data in the aftermath of two recent catastrophic hurricane events - Ida and Ian - from affected residential buildings to study the relationships among flood characteristics, mold growth, building properties, human behavior and human respiratory health. Our interdisciplinary team uses survey questionnaires, laboratory experiments and machine learning modeling to answer the following scientific questions: (1) what flood characteristics and drivers, building and HVAC system properties and human behaviors cause higher levels of mold growth in residential buildings? and (2) how does living in submerged or water-damaged houses after floods affect asthma symptoms among the residents? The developed empirical database and identified relationships can be used to guide building designers and occupational health scientists to establish resilient indoor environments, provide a foundation to develop flood-induced mold growth and asthma risk models, assist public health officials and emergency managers to have a better understanding of indirect health-related impacts of floods and support the development of timely strategies for disaster management in population centers. 
    more » « less
  3. Every year, floods cause substantial economic losses worldwide with devastating impacts on buildings and physical infrastructures throughout communities. Techniques are available to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to their benefits from a community resilience perspective is limited in the literature. Investing in flood mitigation is critical for communities to protect the physical and socioeconomic systems that depend on them. While there are multiple mitigation options to implement at the building level, this paper focuses on determining the optimal flood mitigation strategy for buildings to minimize flood losses within a community. In this research, a mixed integer linear programming model is proposed for studying the effects and trade-offs associated with pre-event short-term and long-term mitigation strategies to minimize the expected economic losses associated with floods. The capabilities of the proposed model are illustrated for Lumberton, North Carolina (NC), a small, socially diverse inland community on the Lumber River. The mathematically optimal building-level flood mitigation plan is provided based on the available budget, which can significantly minimize the total expected direct economic loss of the community. The results reveal important correlations among investment quantity, building-level short- and long-term mitigation measures, flood depths of various locations, and buildings’ structure. Additionally, this study shows the trade-offs between short- and long-term mitigation measures based on available budget by providing decision support to building owners regarding mitigation measures for their buildings. 
    more » « less
  4. Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting. 
    more » « less
  5. With commercial and residential buildings accounting for approximately 40% of the energy and 70% of the electricity consumption in the United States, there are substantial opportunities to improve energy efficiency in these buildings. Similarly, buildings also account for the large majority of electricity demand, particularly during peak use hours. As the electric grid becomes increasingly supported by renewable energy, buildings are ideal for supporting demand-side management, allowing for the electricity demand to meet the variable levels of electricity supply. Integrated controls of various building energy system components, including HVAC (Heating Ventilation and Air Conditioning), lighting, and shading devices, combined with advanced sensor and control technologies, can help to optimize system operations. This research aims to study the impact of integrated HVAC, lighting, and shading device controls, to estimate energy and demand saving in typical small office buildings in the U.S. This is achieved through a multi-step modeling process, including daylight simulation using Radiance to evaluate available daylight for each zone, then EnergyPlus to develop and implement various controls and estimate energy and demand savings using the Radiance results as input. The result of this work provides insights for a variety of stakeholders in the building, utility and grid operator industries and quantifies the potential benefit of integrated systems. 
    more » « less