This content will become publicly available on February 27, 2025
- Award ID(s):
- 2103754
- PAR ID:
- 10501219
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Advanced Engineering Informatics
- Volume:
- 60
- ISSN:
- 1474-0346
- Page Range / eLocation ID:
- 102427
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
During natural disasters, people often use social media platforms, such as Twitter, to post information about casualties and damage produced by disasters. This information can help relief authorities gain situational awareness in nearly real time, and enable them to quickly distribute resources where most needed. However, annotating data for this purpose can be burdensome, subjective and expensive. In this paper, we investigate how to leverage the copious amounts of unlabeled data generated on social media by disaster eyewitnesses and affected individuals during disaster events. To this end, we propose a semi-supervised learning approach to improve the performance of neural models on several multimodal disaster tweet classification tasks. Our approach shows significant improvements, obtaining up to 7.7% improvements in F-1 in low-data regimes and 1.9% when using the entire training data. We make our code and data publicly available at https://github.com/iustinsirbu13/multimodal-ssl-for-disaster-tweet-classification.more » « less
-
Aerial images provide important situational aware- ness for responding to natural disasters such as hurricanes. They are well-suited for providing information for damage estimation and localization (DEL); i.e., characterizing the type and spatial extent of damage following a disaster. Despite recent advances in sensing and unmanned aerial systems technology, much of post-disaster aerial imagery is still taken by handheld DSLR cameras from small, manned, fixed-wing aircraft. However, these handheld cameras lack IMU information, and images are taken opportunistically post-event by operators. As such, DEL from such imagery is still a highly manual and time-consuming process. We propose an approach to both detect damage in aerial images and localize it in world coordinates, with specific focus on detecting and localizing flooding. The approach is based on using structure from motion to relate image coordinates to world coordinates via a projective transformation, using class activation mapping to detect the extent of damage in an image, and applying the projective transformation to localize damage in world coordinates. We evaluate the performance of our approach on post-event data from the 2016 Louisiana floods, and find that our approach achieves a precision of 88%. Given this high precision using limited data, we argue that this approach is currently viable for fast and effective DEL from handheld aerial imagery for disaster response.more » « less
-
A planning-oriented resilience assessment and enhancement approach is proposed that can efficiently deal with multi-type natural disasters. A unified disaster modelling framework is proposed to extract key information from various potential disaster scenarios, thus forming a disaster scenario database. The impact-increment-based enumeration method is applied, and a reusable impact-increment database is established to speed up the assessment process. The reusable database is also utilized to calculate component-level resilience indices and economic indices, so as to make enhancement strategies against potential disasters within planning time scale. Resilience assessment on an integrated electricity-gas system in Taiwan’s coastal seismic statistical zone shows that the proposed method can significantly improve the computational efficiency as compared to existing methods. Numerical results indicate that the resilient planning considering the diversity of natural disaster types comprehensively improves the system resilience, which means it is not only concerned with the system performance under a single type of disaster. In addition, the most suitable resilience enhancement scheme with insufficient funds shall be developed according to the economic indices, instead of the component-level resilience indices that cannot balance the resilience enhancement effect with the implementation cost.more » « less
-
Fortson, Lucy ; Crowston, Kevin ; Kloetzer, Laure ; Ponti, Marisa (Ed.)Using public support to extract information from vast datasets has become a popular method for accurately labeling wildlife data in camera trap (CT) images. However, the increasing demand for volunteer effort lengthens the time interval between data collection and our ability to draw ecological inferences or perform data-driven conservation actions. Artificial intelligence (AI) approaches are currently highly effective for species detection (i.e., whether an image contains animals or not) and labeling common species; however, it performs poorly on species rarely captured in images and those that are highly visually similar to one another. To capitalize on the best of human and AI classifying methods, we developed an integrated CT data pipeline in which AI provides an initial pass on labeling images, but is supervised and validated by humans (i.e., a “human-in-the-loop” approach). To assess classification accuracy gains, we compare the precision of species labels produced by AI and HITL protocols to a “gold standard” (GS) dataset annotated by wildlife experts. The accuracy of the AI method was species-dependent and positively correlated with the number of training images. The combined efforts of HITL led to error rates of less than 10% for 73% of the dataset and lowered the error rates for an additional 23%. For two visually similar species, human input resulted in higher error rates than AI. While integrating humans in the loop increases classification times relative to AI alone, the gains in accuracy suggest that this method is highly valuable for high-volume CT surveys.more » « less
-
Firms’ public communication on social media during disasters can benefit both disaster response efficiency and the perception of the corporate image. Despite its importance, limited guidelines are available to inform firms’ disaster communication strategies. The current study examines firms’ communication on social media in various disasters and how it impacts public engagement. We employ a novel natural language processing (NLP) approach, Semantic Projection with Active Retrieval (SPAR), to analyze Facebook posts made by Russell 3000 firms between 2009 and 2022 concerning various disasters. We show that firm communication can be measured based on two dimensions derived from the Competing Values Framework (CVF): internal versus external and stable versus flexible. We find that social media messages that emphasize operational continuity (internal/stable-oriented) are more popular during biological disasters. By contrast, messages that stress innovations and adaptations to disasters (external/flexible-oriented) elicit more engagement in weather-related disasters. The study offers a framework to characterize and guide firms’ design of disaster communication on social media in different disaster contexts. Our SPAR method is also available to firms to analyze their social media data and uncover the underlying patterns in communication across different contexts.