skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ON ALPERIN’S LOWER BOUND FOR THE NUMBER OF BRAUER CHARACTERS
Abstract We prove that the number of conjugacy classes of a finite groupGconsisting of elements of odd order, is larger than or equal to that number for the normaliser of a Sylow 2-subgroup ofG. This is predicted by the Alperin Weight Conjecture.  more » « less
Award ID(s):
2200850
PAR ID:
10501234
Author(s) / Creator(s):
; ;
Publisher / Repository:
Transformation Groups
Date Published:
Journal Name:
Transformation Groups
Volume:
28
Issue:
3
ISSN:
1083-4362
Page Range / eLocation ID:
1205-1220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Letk(B0) andl(B0) respectively denote the number of ordinary andp-Brauer irreducible characters in the principal blockB0of a finite groupG. We prove that, ifk(B0)−l(B0) = 1, thenl(B0) ≥p− 1 or elsep= 11 andl(B0) = 9. This follows from a more general result that for every finite groupGin which all non-trivialp-elements are conjugate,l(B0) ≥p− 1 or elsep= 11 and$$G/{{\bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)$$ G / O p ( G ) C 11 2 SL ( 2 , 5 ) . These results are useful in the study of principal blocks with few characters. We propose that, in every finite groupGof order divisible byp, the number of irreducible Brauer characters in the principalp-block ofGis always at least$$2\sqrt {p - 1} + 1 - {k_p}(G)$$ 2 p 1 + 1 k p ( G ) , wherekp(G) is the number of conjugacy classes ofp-elements ofG. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number ofp-regular classes in finite groups. 
    more » « less
  2. Abstract LetL/Kbe a Galois extension of number fields with Galois groupG. We show that if the density of prime ideals inKthat split totally inLtends to 1/∣G∣ with a power saving error term, then the density of prime ideals inKwhose Frobenius is a given conjugacy classC⊂Gtends to ∣C∣/∣G∣ with the same power saving error term. We deduce this by relating the poles of the corresponding Dirichlet series to the zeros ofζL(s)/ζK(s). 
    more » « less
  3. Abstract Theq-color Ramsey number of ak-uniform hypergraphG,  denotedr(G; q), is the minimum integerNsuch that any coloring of the edges of the completek-uniform hypergraph onNvertices contains a monochromatic copy ofG. The study of these numbers is one of the most central topics in combinatorics. One natural question, which for triangles goes back to the work of Schur in 1916, is to determine the behavior ofr(G; q) for fixedGandqtending to infinity. In this paper, we study this problem for 3-uniform hypergraphs and determine the tower height ofr(G; q) as a function ofq. More precisely, given a hypergraphG, we determine whenr(G; q) behaves polynomially, exponentially or double exponentially inq. This answers a question of Axenovich, Gyárfás, Liu and Mubayi. 
    more » « less
  4. Abstract We say that a graphHdominates another graphHif the number of homomorphisms fromHto any graphGis dominated, in an appropriate sense, by the number of homomorphisms fromHtoG. We study the family of dominating graphs, those graphs with the property that they dominate all of their subgraphs. It has long been known that even-length paths are dominating in this sense and a result of Hatami implies that all weakly norming graphs are dominating. In a previous paper, we showed that every finite reflection group gives rise to a family of weakly norming, and hence dominating, graphs. Here we revisit this connection to show that there is a much broader class of dominating graphs. 
    more » « less
  5. A<sc>bstract</sc> An extended search for anomaly free matter coupledN= (1,0) supergravity in six dimension is carried out by two different methods which we refer to as the graphical and rank methods. In the graphical method the anomaly free models are built from single gauge group models, called nodes, which can only have gravitational anomalies. We search for anomaly free theories with gauge groupsG1× … ×Gnwithn= 1,2,… (any number of factors) andG1× … ×Gn×U(1)Rwheren= 1,2,3 andU(1)Ris theR-symmetry group. While we primarily consider models with the tensor multiplet numbernT= 1, we also provide some results fornT≠ 1 with an unconstrained number of charged hypermultiplets. We find a large number of ungauged anomaly free theories. However, in the case ofR-symmetry gauged models withnT= 1, in addition to the three known anomaly free theories withG1×G2×U(1)Rtype symmetry, we find only six new remarkably anomaly free models with symmetry groups of the formG1×G2×G3×U(1)R. In the case ofnT= 1 and ungauged models, excluding low rank group factors and considering only low lying representations, we find all anomaly free theories. Remarkably, the number of group factors does not exceed four in this class. The proof of completeness in this case relies on a bound which we establish for a parameter characterizing the difference between the number of non-singlet hypermultiplets and the dimension of the gauge group. 
    more » « less