skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating X-Ray Reverberation in the Ultraviolet-emitting Regions of Active Galactic Nuclei Accretion Disks with Three-dimensional Multifrequency Radiation Magnetohydrodynamic Simulations
Abstract Active galactic nuclei (AGN) light curves observed with different wave bands show that the variability in longer wavelength bands lags the variability in shorter wavelength bands. Measuring these lags, or reverberation mapping, is used to measure the radial temperature profile and extent of AGN disks, typically with a reprocessing model that assumes X-rays are the main driver of the variability in other wavelength bands. To demonstrate how this reprocessing works with realistic accretion disk structures, we use 3D local shearing box multifrequency radiation magnetohydrodynamic simulations to model the UV-emitting region of an AGN disk, which is unstable to the magnetorotational instability and convection. At the same time, we inject hard X-rays (>1 keV) into the simulation box to study the effects of X-ray irradiation on the local properties of the turbulence and the resulting variability of the emitted UV light curve. We find that disk turbulence is sufficient to drive intrinsic variability in emitted UV light curves and that a damped random walk model is a good fit to this UV light curve for timescales >5 days. Meanwhile, X-ray irradiation has negligible impact on the power spectrum of the emitted UV light curve. Furthermore, the injected X-ray and emitted UV light curves are only correlated if there is X-ray variability on timescales >1 day, in which case we find a correlation coefficientr= 0.34. These results suggest that if the opacity for hard X-rays is scattering dominated as in the standard disk model, hard X-rays are not the main driver of reverberation signals.  more » « less
Award ID(s):
2306950
PAR ID:
10501247
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
965
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L29
Size(s):
Article No. L29
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Disk continuum reverberation mapping is one of the primary ways we learn about active galactic nuclei (AGN) accretion disks. Reverberation mapping assumes that time-varying X-rays incident on the accretion disk drive variability in UV–optical light curves emitted by AGN disks and uses lags between X-ray and UV–optical variability on the light-crossing timescale to measure the radial temperature profile and extent of AGN disks. However, recent reverberation mapping campaigns have revealed oddities in some sources, such as weakly correlated X-ray and UV light curves, longer than anticipated lags, and evidence of intrinsic variability from disk fluctuations. To understand how X-ray reverberation works with realistic accretion disk structures, we perform 3D multifrequency radiation magnetohydrodynamic simulations of X-ray reprocessing by the UV-emitting region of an AGN disk using sophisticated opacity models that include line opacities for both the X-ray and UV radiation. We find there are two important factors that determine whether X-ray irradiation and UV emission will be well-correlated: the ratio of X-ray to UV luminosity and significant absorption. When these factors are met, the reprocessing of X-rays into UV is nearly instantaneous, as is often assumed, although linear reprocessing models are insufficient to fully capture X-ray reprocessing in our simulations. Nevertheless, we can still easily recover mock lags in our light curves using software that assumes linear reprocessing. Finally, the X-rays in our simulation heat the disk, increasing temperatures by a factor of 2–5 in the optically thin region, which could help explain the discrepancy between measured and anticipated lags. 
    more » « less
  2. Abstract X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags—effectively allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those expected from standard disk reprocessing by a factor of 2–3. The lags agree with the anticipated disk reverberation lags when isolating short-timescale variability, namely timescales shorter than the Hβlag. Modeling the lags requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from contemporaneous Hβ-lag measurements. When we divide the campaign light curves, the UVOIR lags show substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind weakens, the lags are dominated by shorter accretion disk lags. 
    more » « less
  3. UV and optical continuum reverberation mapping is a powerful tool for probing the accretion disk and inner broad-line region. However, recent reverberation mapping campaigns in the X-ray, UV, and optical have found lags consistently longer than those expected from the standard disk reprocessing picture. The largest discrepancy to date was recently reported in Mrk 335, where UV/optical lags are up to 12 times longer than expected. Here, we perform a frequency-resolved time lag analysis of Mrk 335, using Gaussian processes to account for irregular sampling. For the first time, we compare the Fourier frequency-resolved lags directly to those computed using the popular interpolated cross-correlation function method applied to both the original and detrended light curves. We show that the anticipated disk reverberation lags are recovered by the Fourier lags when zeroing in on the short-timescale variability. This suggests that a separate variability component is present on long timescales. If this separate component is modeled as reverberation from another region beyond the accretion disk, we constrain a size scale of roughly 15 lt-days from the central black hole. This is consistent with the size of the broad-line region inferred from Hβreverberation lags. We also find tentative evidence for a soft X-ray lag, which we propose may be due to light travel time delays between the hard X-ray corona and distant photoionized gas that dominates the soft X-ray spectrum below 2 keV. 
    more » « less
  4. Abstract The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum. 
    more » « less
  5. ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction. 
    more » « less