This content will become publicly available on March 25, 2025
Decentralized learning has emerged as an alternative method to the popular parameter-server framework which suffers from high communication burden, single-point failure and scalability issues due to the need of a central server. However, most existing works focus on a single shared model for all workers regardless of the data heterogeneity problem, rendering the resulting model performing poorly on individual workers. In this work, we propose a novel personalized decentralized learning algorithm named DePRL via shared representations. Our algorithm relies on ideas from representation learning theory to learn a low-dimensional global representation collaboratively among all workers in a fully decentralized manner, as well as a user-specific low-dimensional local head leading to a personalized solution for each worker. We show that DePRL achieves, for the first time, a provable \textit{linear speedup for convergence} with general non-linear representations (i.e., the convergence rate is improved linearly with respect to the number of workers). Experimental results support our theoretical findings showing the superiority of our method in data heterogeneous environments.
more » « less- Award ID(s):
- 2148309
- NSF-PAR ID:
- 10501337
- Publisher / Repository:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 14
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 16103 to 16111
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In distributed machine learning, while a great deal of attention has been paid on centralized systems that include a central parameter server, decentralized systems have not been fully explored. Decentralized systems have great potentials in the future practical use as they have multiple useful attributes such as less vulnerable to privacy and security issues, better scalability, and less prone to single point of bottleneck and failure. In this paper, we focus on decentralized learning systems and aim to achieve differential privacy with good convergence rate and low communication cost. To achieve this goal, we propose a new algorithm, Leader-Follower Elastic Averaging Stochastic Gradient Descent (LEASGD), driven by a novel Leader-Follower topology and differential privacy model. We also provide a theoretical analysis of the convergence rate of LEASGD and the trade-off between the performance and privacy in the private setting. We evaluate LEASGD in real distributed testbed with poplar deep neural network models MNIST-CNN, MNIST-RNN, and CIFAR-10. Extensive experimental results show that LEASGD outperforms state-of-the-art decentralized learning algorithm DPSGD by achieving nearly 40% lower loss function within same iterations and by 30% reduction of communication cost. Moreover, it spends less differential privacy budget and has final higher accuracy result than DPSGD under private setting.more » « less
-
Federated learning (FL) has been emerging as a new distributed machine learning paradigm recently. Although FL can protect the data privacy of participants by keeping their training data on local devices, there are recent works raising new privacy concerns especially when workers or the parameter server of FL are untrustworthy or malicious. One effective way to solve the problem is using hierarchical federated learning (HFL) where a few middle-layer aggregators (or called group leaders) are used to aggregate local model updates from workers and send group model updates to the parameter server. In this paper, we consider the participant selection problem of HFL in an edge cloud with multiple FL models, where each model needs to select one parameter server, a few group leaders and a certain amount of workers from edge servers to jointly perform HFL. We first formulate this problem as a non-linear integer programming, aiming to minimize the total learning cost of all models while satisfying the constrained edge resources. We then design a three-stage algorithm by decoupling the original problem into three sub-problems and solving them iteratively. Simulations with real-world datasets and FL models confirm that our proposed algorithm can efficiently reduce the average total learning cost in edge cloud compared with existing methods.more » « less
-
null (Ed.)Recently decentralized optimization attracts much attention in machine learning because it is more communication-efficient than the centralized fashion. Quantization is a promising method to reduce the communication cost via cutting down the budget of each single communication using the gradient compression. To further improve the communication efficiency, more recently, some quantized decentralized algorithms have been studied. However, the quantized decentralized algorithm for nonconvex constrained machine learning problems is still limited. Frank-Wolfe (a.k.a., conditional gradient or projection-free) method is very efficient to solve many constrained optimization tasks, such as low-rank or sparsity-constrained models training. In this paper, to fill the gap of decentralized quantized constrained optimization, we propose a novel communication-efficient Decentralized Quantized Stochastic Frank-Wolfe (DQSFW) algorithm for non-convex constrained learning models. We first design a new counterexample to show that the vanilla decentralized quantized stochastic Frank-Wolfe algorithm usually diverges. Thus, we propose DQSFW algorithm with the gradient tracking technique to guarantee the method will converge to the stationary point of non-convex optimization safely. In our theoretical analysis, we prove that to achieve the stationary point our DQSFW algorithm achieves the same gradient complexity as the standard stochastic Frank-Wolfe and centralized Frank-Wolfe algorithms, but has much less communication cost. Experiments on matrix completion and model compression applications demonstrate the efficiency of our new algorithm.more » « less
-
We study multi-task representation learning for the problem of pure exploration in bilinear bandits. In bilinear bandits, an action takes the form of a pair of arms from two different entity types and the reward is a bilinear function of the known feature vectors of the arms. In the \textit{multi-task bilinear bandit problem}, we aim to find optimal actions for multiple tasks that share a common low-dimensional linear representation. The objective is to leverage this characteristic to expedite the process of identifying the best pair of arms for all tasks. We propose the algorithm GOBLIN that uses an experimental design approach to optimize sample allocations for learning the global representation as well as minimize the number of samples needed to identify the optimal pair of arms in individual tasks. To the best of our knowledge, this is the first study to give sample complexity analysis for pure exploration in bilinear bandits with shared representation. Our results demonstrate that by learning the shared representation across tasks, we achieve significantly improved sample complexity compared to the traditional approach of solving tasks independently.more » « less
-
Massive datasets are typically distributed geographically across multiple sites, where scalability, data privacy and integrity, as well as bandwidth scarcity typically discourage uploading these data to a central server. This has propelled the so-called federated learning framework where multiple workers exchange information with a server to learn a “centralized” model using data locally generated and/or stored across workers. This learning framework necessitates workers to communicate iteratively with the server. Although appealing for its scalability, one needs to carefully address the various data distribution shifts across workers, which degrades the performance of the learnt model. In this context, the distributionally robust op-timization framework is considered here. The objective is to endow the trained model with robustness against adversarially manipulated input data, or, distributional uncertainties, such as mismatches between training and testing data distributions, or among datasets stored at different workers. To this aim, the data distribution is assumed unknown, and to land within a Wasserstein ball centered around the empirical data distribution. This robust learning task entails an infinite-dimensional optimization problem, which is challenging. Leveraging a strong duality result, a surrogate is obtained, for which a primal-dual algorithm is developed. Compared to classical methods, the proposed algorithm offers robustness with little computational overhead. Numerical tests using image datasets showcase the merits of the proposed algorithm under several existing adversarial attacks and distributional uncertainties.more » « less