skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2148309

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Federated Learning (FL) aims to train a shared model using data and computation power on distributed agents coordinated by a central server. Decentralized FL (DFL) utilizes local model exchange and aggregation between agents to reduce the communication and computation overheads on the central server. However, when agents are mobile, the communication opportunity between agents can be sporadic, largely hindering the convergence and accuracy of DFL. In this paper, we study delay-tolerant model spreading and aggregation enabled by model caching on mobile agents. Each agent stores not only its own model, but also models of agents encountered in the recent past. When two agents meet, they exchange their own models as well as the cached models. Local model aggregation works on all models in the cache. We theoretically analyze the convergence of DFL with cached models, explicitly taking into account the model staleness introduced by caching. We design and compare different model caching algorithms for different DFL and mobility scenarios. We conduct detailed case studies in a vehicular network to systematically investigate the interplay between agent mobility, cache staleness, and model convergence. In our experiments, cached DFL converges quickly, and significantly outperforms DFL without caching. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. With the development of space-air-ground integrated networks, Low Earth Orbit (LEO) satellite networks are envisioned to play a crucial role in providing data transmission services in the 6G era. However, the increasing number of connected devices leads to a surge in data volume and bursty traffic patterns. Ensuring the communication stability of LEO networks has thus become essential. While Lyapunov optimization has been applied to network optimization for decades and can guarantee stability when traffic rates remain within the capacity region, its applicability in LEO satellite networks is limited due to the bursty and dynamic nature of LEO network traffic. To address this issue, we propose a robust Lyapunov optimization method to ensure stability in LEO satellite networks. We theoretically show that for a stabilizable network system, traffic rates do not have to always stay within the capacity region at every time slot. Instead, the network can accommodate temporary capacity region violations, while ensuring the long-term network stability. Extensive simulations under various traffic conditions validate the effectiveness of the robust Lyapunov optimization method, demonstrating that LEO satellite networks can maintain stability under finite violations of the capacity region. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  4. In this paper, we have proposed a resilient reinforcement learning method for discrete-time linear systems with unknown parameters, under denial-of-service (DoS) attacks. The proposed method is based on policy iteration that learns the optimal controller from input-state data amidst DoS attacks. We achieve an upper bound for the DoS duration to ensure closed-loop stability. The resilience of the closed-loop system, when subjected to DoS attacks with the learned controller and an internal model, has been thoroughly examined. The effectiveness of the proposed methodology is demonstrated on an inverted pendulum on a cart. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  5. Free, publicly-accessible full text available December 8, 2025
  6. The majority of the past research dealing with lane-changing controller design of autonomous vehicles (𝐴𝑉 s) is based on the assumption of full knowledge of the model dynamics of the 𝐴𝑉 and the surrounding vehicles. However, in the real world, this is not a very realistic assumption as accurate dynamic models are difficult to obtain. Also, the dynamic model parameters might change over time due to various factors. Thus, there is a need for a learning-based lane change controller design methodology that can learn the optimal control policy in real time using sensor data. In this paper, we have addressed this need by introducing an optimal learningbased control methodology that can solve the real-time lane-changing problem of 𝐴𝑉 s, where the input-state data of the 𝐴𝑉 is utilized to generate a near-optimal lane-changing controller by approximate/adaptive dynamic programming (ADP) technique. In the case of this type of complex lane-changing maneuver, the lateral dynamics depend on the longitudinal velocity of the vehicle. If the longitudinal velocity is assumed constant, a linear parameter invariant model can be used. However, assuming constant velocity while performing a lane-changing maneuver is not a realistic assumption. This assumption might increase the risk of accidents, especially in the case of lane abortion when the surrounding vehicles are not cooperative. Thus, in this paper, the dynamics of the 𝐴𝑉 are assumed to be a linear parameter-varying system. Thus we have two challenges for the lane-changing controller design: parameter-varying, and unknown dynamics. With the help of both gain scheduling and ADP techniques combined, a learning-based control algorithm that can generate a near-optimal lane-changing controller without having to know the accurate dynamic model of the 𝐴𝑉 is proposed. The inclusion of a gain scheduling approach with ADP makes the controller applicable to non-linear and/or parameter-varying 𝐴𝑉 dynamics. The stability of the learning-based gain scheduling controller has also been rigorously proved. Moreover, a data-driven lane-changing decision-making algorithm is introduced that can make the 𝐴𝑉 perform a lane abortion if safety conditions are violated during a lane change. Finally, the proposed learning-based gain scheduling controller design algorithm and the lane-changing decision-making methodology are numerically validated using MATLAB, SUMO simulations, and the NGSIM dataset. 
    more » « less