This poster reports on a workshop to help elementary school teachers integrate culturally relevant computer science (CS) learning opportunities into their classrooms. Findings highlight the importance of facilitators to help teachers discuss cultural competence and the value of co-developed rubrics to evaluate lessons. The presentation will discuss results and share artifacts from the workshop.
more »
« less
Supporting Culturally Relevant Computer Science: Evaluating Lesson Plans With a Research-Practitioner Partnership Rubric
This poster paper explores how teachers and researchers in a research-practitioner partnership utilize a rubric to evaluate lesson plans in terms of the integration of culturally relevant computer science. Results include that teachers felt able to include opportunities for cultural competence but indicate that additional support is necessary to include opportunities for cultural critique and conceptions of knowledge. The poster presented at this conference will highlight additional supports that teachers may need to develop culturally relevant computer science lesson plans.
more »
« less
- Award ID(s):
- 2031258
- PAR ID:
- 10501387
- Publisher / Repository:
- International Society of the Learning Sciences Annual Meeting
- Date Published:
- Page Range / eLocation ID:
- 1929 to 1930
- Format(s):
- Medium: X
- Location:
- Montreal, QC
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Oftentimes engineering design tasks are thought of as acultural and devoid of community inclusion and values. However, engineering design is inherently a cultural endeavor. Problems needing engineering solutions or design thinking are situated in a specific community and need community solutions. This work in progress paper describes initial efforts from a project to help elementary and middle school teachers create culturally relevant engineering design tasks for implementation in their classrooms. To integrate best practices for culturally relevant pedagogy, the engineering design framework developed by UTeach Engineering was adapted to specifically address community needs and cultural values. Changes to the framework also include culturally relevant instructional strategies for classroom implementation. To situate the engineering design steps within a culturally relevant framework questions involving communities and students’ cultural needs, values, and expectations were posed in each stage of the design process. A water filtration engineering design task was situated in the cultural concept of “Mni Wiconi” (Water is life in the Dakota language). This was taught in a summer professional development workshop for a cohort of elementary and middle school teachers, in rural North Dakota, with school districts comprised of large Native American student populations. Teachers adapted this design task for their individual classrooms and content areas (science, math, social studies, ELA) and implemented it in their classrooms in the fall of 2021. Additional support for teachers was provided with fall workshop days aimed at helping them with the facilitation of a culturally relevant engineering task. To integrate culturally relevant teaching and good engineering design tasks, the North Dakota Department of Public Instruction’s Native American Essential Understandings Teachings of our Elder’s website was used. This allowed teachers and students to have firsthand knowledge of how various science and engineering concepts are framed within the indigenous community. Professional development focused on how to situate culturally responsive teaching in engineering design. For example, in one of the school districts the water filtration task was related to increased pollution of a nearby lake which holds significant importance for the local Tribal Nation. In addition to being able to visibly witness the demand for cleaner water, the book “We are Water Protectors” written by Carole Lindstrom, was used to provide cultural grounding for the Identify and Describe stages of the engineering design framework. Case studies of how teachers incorporated the water filtration design task into their lesson plans are presented along with their suggestions on how to improve classroom implementation. Future work in the program includes teachers and their students developing engineering design tasks situated in their own communities and cultures.more » « less
-
The field of computer science continues to lack diverse representation from women and racially minoritized individuals. One way to address the discrepancies in representation is through systematic changes in computer science education from a young age. Pedagogical and instructional changes are needed to promote meaningful and equitable learning that engages students with rigorous and inclusive curricula. We developed an equity-focused professional development program for teachers that promotes culturally responsive pedagogy in the context of computer science education. This study provides an overview of our culturally responsive framework and a qualitative examination of how teachers (n=9) conceptualized and applied culturally responsive pedagogy in their classrooms. Drawing from grounded theory and lesson assessment rubrics, we developed a codebook to analyze teacher interviews, lesson plans, and questionnaire responses. Findings revealed that, following their participation in professional development, teachers were consistently planning to implement a wide range of culturally responsive instructional and pedagogical practices capable of promoting diversity, equity, and inclusion in computer science education.more » « less
-
The field of computer science continues to lack diverse representation from women and racially minoritized individuals. One way to address the discrepancies in representation is through systematic changes in computer science education from a young age. Pedagogical and instructional changes are needed to promote meaningful and equitable learning that engages students with rigorous and inclusive curricula. We developed an equity-focused professional development program for teachers that promotes culturally responsive pedagogy in the context of computer science education. This study provides an overview of our culturally responsive framework and a qualitative examination of how teachers (n=9) conceptualized and applied culturally responsive pedagogy in their classrooms. Drawing from grounded theory and lesson assessment rubrics, we developed a codebook to analyze teacher interviews, lesson plans, and questionnaire responses. Findings revealed that, following their participation in professional development, teachers were consistently planning to implement a wide range of culturally responsive instructional and pedagogical practices capable of promoting diversity, equity, and inclusion in computer science education.more » « less
-
Doyle, Maureen; Stephenson, Ben. (Ed.)This study took place in the context of a researcher-practitioner partnership (RPP) between a research organization, the Wyoming Department of Education, and three school districts serving primarily Eastern Shoshone and Northern Arapaho students on the Wind River Reservation. The goal of the RPP is to integrate instruction on the Indian Education for All Wyoming social studies standards with the Wyoming computer science standards in elementary school in ways that are culturally responsive [1]. The project team provided 12 hours of professional development across three sessions, three professional learning community sessions, lesson plans, and model projects. Teachers were expected to implement three coding projects across the school year. The study team collected data via teacher interviews, surveys, and observations of professional development and professional learning community sessions [2]. Three problems of practice that emerged from our preliminary qualitative analysis [3] include: (a) how to support student interest and engagement in computer science especially upon first introduction of a coding platform, (b) how to find time in the school day for computer science and to develop methods for integrating computer science with other subjects, and (c) how to build collaboration across classrooms and districts. The poster will discuss the adaptations teachers made to address the first two problems of practice and the RPP's strategy for addressing the third problem of practice in our next year of implementation. These findings will be of interest to researchers and practitioners working to implement culturally responsive computer science instruction in elementary schools in Indigenous communities.more » « less
An official website of the United States government
