Controller Area Network (CAN) is the de-facto standard in-vehicle network system. Despite its wide adoption by automobile manufacturers, the lack of security design makes it vulnerable to attacks. For instance, broadcasting packets without authentication allows the impersonation of electronic control units (ECUs). Prior mitigations, such as message authentication or intrusion detection systems, fail to address the compatibility requirement with legacy ECUs, stealthy and sporadic malicious messaging, or guaranteed attack detection. We propose a novel authentication system called ShadowAuth that overcomes the aforementioned challenges by offering backward-compatible packet authentication to ECUs without requiring ECU firmware source code. Specifically, our authentication scheme provides transparent CAN packet authentication without modifying existing CAN packet definitions (e.g., J1939) via automatic ECU firmware instrumentation technique to locate CAN packet transmission code, and instrument authentication code based on the CAN packet behavioral transmission patterns. ShadowAuth enables vehicles to detect state-of-the-art CAN attacks, such as bus-off and packet injection, responsively within 60ms without false positives. ShadowAuth provides a sound and deployable solution for real-world ECUs.
more »
« less
PhyAuth: Physical-Layer Message Authentication for ZigBee Networks
ZigBee is a popular wireless communication standard for Internet of Things (IoT) networks. Since each ZigBee network uses hop-by-hop network-layer message authentication based Yanchao Zhang Arizona State University Star E E Tree E E R E Mesh E E R E E E on a common network key, it is highly vulnerable to packetC E injection attacks, in which the adversary exploits the compromised network key to inject arbitrary fake packets from any spoofed address to disrupt network operations and conCoordinator C R E sume the network/device resources. In this paper, we present PhyAuth, a PHY hop-by-hop message authentication frameE E C R R E E E R R C R E E Router E E E End Device Figure 1: ZigBee network topologies. work to defend against packet-injection attacks in ZigBee networks. The key idea of PhyAuth is to let each ZigBee E The coordinator acts as a central node responsible for mantransmitter embed into its PHY signals a PHY one-time password (called POTP) derived from a device-specific secret key and an efficient cryptographic hash function. An authentic POTP serves as the transmitter’s PHY transmission permission for the corresponding packet. PhyAuth provides three schemes to embed, detect, and verify POTPs based on different features of ZigBee PHY signals. In addition, PhyAuth involves lightweight PHY signal processing and no change to the ZigBee protocolstack. Comprehensive USRP experiments confirm that PhyAuth can efficiently detect fake packets with very low false-positive and false-negative rates while having a negligible negative impact on normal data transmissions.
more »
« less
- Award ID(s):
- 2055751
- PAR ID:
- 10501432
- Publisher / Repository:
- USENIX
- Date Published:
- Journal Name:
- Proceedings of the 32nd USENIX Security Symposium
- Format(s):
- Medium: X
- Location:
- Anaheim, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Low-power wireless mesh networks (LPWMNs) have been widely used in wireless monitoring and control applications. Although LPWMNs work satisfactorily most of the time thanks to decades of research, they are often complex, inelastic to change, and difficult to manage once the networks are deployed. Moreover, the deliveries of control commands, especially those carrying urgent information such as emergency alarms, suffer long delay, since the messages must go through the hop-by-hop transport. Recent studies show that adding low-power wide-area network radios such as LoRa onto the LPWMN devices (e.g., ZigBee) effectively overcomes the limitation. However, users have shown a marked reluctance to embrace the new heterogeneous communication approach because of the cost of hardware modification. In this article, we introduce LoRaBee, a novel LoRa to ZigBee cross-technology communication (CTC) approach, which leverages the energy emission in the Sub-1 GHz bands as the carrier to deliver information. Although LoRa and ZigBee adopt distinct modulation techniques, LoRaBee sends information from LoRa to ZigBee by putting specific bytes in the payload of legitimate LoRa packets. The bytes are selected such that the corresponding LoRa chirps can be recognized by the ZigBee devices through sampling the received signal strength. Experimental results show that our LoRaBee provides reliable CTC communication from LoRa to ZigBee with the throughput of up to 281.61 bps in the Sub-1 GHz bands.more » « less
-
null (Ed.)Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strong Quality-of-Control (QoC) guarantees even in the presence of false-data injection attacks, such as Man-in-the-Middle (MitM) attacks. Consequently, in this work, we focus on integrating security into existing resource-constrained CPS, in order to protect against MitM attacks on a system where a set of control tasks communicates over a real-time network with system sensors and actuators. We introduce a design-time methodology that incorporates requirements for QoC in the presence of attacks into end-to-end timing constraints for real-time control transactions, which include data acquisition and authentication, real-time network messages, and control tasks. This allows us to formulate a mixed integer linear programming-based method for direct synthesis of schedulable tasks and message parameters (i.e., deadlines and offsets) that do not violate timing requirements for the already deployed controllers, while adding a sufficient level of protection against network-based attacks; specifically, the synthesis method also provides suitable intermittent authentication policies that ensure the desired QoC levels under attack. To additionally reduce the security-related bandwidth overhead, we propose the use of cumulative message authentication at time instances when the integrity of messages from subsets of sensors should be ensured. Furthermore, we introduce a method for the opportunistic use of the remaining resources to further improve the overall QoC guarantees while ensuring system (i.e., task and message) schedulability. Finally, we demonstrate applicability and scalability of our methodology on synthetic automotive systems as well as a real-world automotive case-study.more » « less
-
null (Ed.)Autonomous vehicles (AVs), equipped with numerous sensors such as camera, LiDAR, radar, and ultrasonic sensor, are revolutionizing the transportation industry. These sensors are expected to sense reliable information from a physical environment, facilitating the critical decision-making process of the AVs. Ultrasonic sensors, which detect obstacles in a short distance, play an important role in assisted parking and blind spot detection events. However, due to their weak security level, ultrasonic sensors are particularly vulnerable to signal injection attacks, when the attackers inject malicious acoustic signals to create fake obstacles and intentionally mislead the vehicles to make wrong decisions with disastrous aftermath. In this paper, we systematically analyze the attack model of signal injection attacks toward moving vehicles. By considering the potential threats, we propose SoundFence, a physical-layer defense system which leverages the sensors’ signal processing capability without requiring any additional equipment. SoundFence verifies the benign measurement results and detects signal injection attacks by analyzing sensor readings and the physical-layer signatures of ultrasonic signals. Our experiment with commercial sensors shows that SoundFence detects most (more than 95%) of the abnormal sensor readings with very few false alarms, and it can also accurately distinguish the real echo from injected signals to identify injection attacks.more » « less
-
null (Ed.)The Host Identity Protocol (HIP) has emerged as the most suitable solution to uniquely identify smart devices in the mobile and distributed Internet of Things (IoT) systems, such as smart cities, homes, cars, and healthcare. The HIP provides authentication methods that enable secure communications between HIP peers. However, the authentication methods provided by the HIP cannot be adopted by the IoT devices with limited processing power because of the computation-intensive cryptographic operations involved in hash generation, signature validation, and session key establishment. Moreover, IoT devices cannot utilize the HIP as is to communicate securely in the low power and lossy networks as there is a considerable communication overhead, such as packet fragmentation and reassembly, for exchanging certificates over a lossy link. Additionally, the use of static host identifiers makes IoT devices vulnerable to cyber espionage and user-targeted attacks. In this article, we propose an authentication scheme, P-HIP, that protects the identity privacy of an IoT device by enabling the device to compute and use unique host identifiers from networks to networks and sessions to sessions. To make the HIP suitable for resource-constrained IoT devices, P-HIP provides methods that unburden IoT devices from computation-intensive operations, such as modular exponentiation, involved in authentication and session-key exchange. Additionally, P-HIP minimizes the communication overheads for exchanging certificates in lossy networks. We implement a prototype of P-HIP on Contiki enabled IoT that shows P-HIP can reduce computation costs, communication overheads, and the session-key establishment time when used by low-powered devices in a lossy network.more » « less
An official website of the United States government

