Abstract For$$g\ge 2$$and$$n\ge 0$$, let$$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$$\mathbb {Z}/2\mathbb {Z}$$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$$\mathcal {H}_{g, n}$$. Using this graph complex, we give a sum-over-graphs formula for the$$S_n$$-equivariant weight zero compactly supported Euler characteristic of$$\mathcal {H}_{g, n}$$. This formula allows for the computer-aided calculation, for each$$g\le 7$$, of the generating function$$\mathsf {h}_g$$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$$\Delta $$-complex. We use these complexes to generalize our formula for$$\mathsf {h}_g$$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves.
more »
« less
Stability for hyperbolic groups acting on boundary spheres
Abstract A hyperbolic groupGacts by homeomorphisms on its Gromov boundary. We show that if$$\partial G$$is a topologicaln–sphere, the action istopologically stablein the dynamical sense: any nearby action is semi-conjugate to the standard boundary action.
more »
« less
- Award ID(s):
- 1933598
- PAR ID:
- 10501491
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 11
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We considerG, a linear algebraic group defined over$$\Bbbk $$, an algebraically closed field (ACF). By considering$$\Bbbk $$as an embedded residue field of an algebraically closed valued fieldK, we can associate to it a compactG-space$$S^\mu _G(\Bbbk )$$consisting of$$\mu $$-types onG. We show that for each$$p_\mu \in S^\mu _G(\Bbbk )$$,$$\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$$is a solvable infinite algebraic group when$$p_\mu $$is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of$$\mathrm {Stab}\left (p_\mu \right )$$in terms of the dimension ofp.more » « less
-
Abstract The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where$$f: X \to {\Bbb R}$$,Xa set, finite or infinite, andKand$$\mu $$denote a suitable kernel and a measure, respectively. Given a connected ordered graphGonnvertices, consider the multi-linear form$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where$${\mathcal E}(G)$$is the edge set ofG. Define$$\Lambda _G(p_1, \ldots , p_n)$$as the smallest constant$$C>0$$such that the inequality(0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions$$f_i$$,$$1\le i\le n$$, onX. The basic question is, how does the structure ofGand the mapping properties of the operator$$T_K$$influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case$$X={\Bbb F}_q^d$$, thed-dimensional vector space over the field withqelements,$$K(x^i,x^j)$$is the indicator function of the sphere evaluated at$$x^i-x^j$$, and connected graphsGwith at most four vertices.more » « less
-
Abstract We prove three results concerning the existence of Bohr sets in threefold sumsets. More precisely, lettingGbe a countable discrete abelian group and$$\phi _1, \phi _2, \phi _3: G \to G$$be commuting endomorphisms whose images have finite indices, we show that(1)If$$A \subset G$$has positive upper Banach density and$$\phi _1 + \phi _2 + \phi _3 = 0$$, then$$\phi _1(A) + \phi _2(A) + \phi _3(A)$$contains a Bohr set. This generalizes a theorem of Bergelson and Ruzsa in$$\mathbb {Z}$$and a recent result of the first author.(2)For any partition$$G = \bigcup _{i=1}^r A_i$$, there exists an$$i \in \{1, \ldots , r\}$$such that$$\phi _1(A_i) + \phi _2(A_i) - \phi _2(A_i)$$contains a Bohr set. This generalizes a result of the second and third authors from$$\mathbb {Z}$$to countable abelian groups.(3)If$$B, C \subset G$$have positive upper Banach density and$$G = \bigcup _{i=1}^r A_i$$is a partition,$$B + C + A_i$$contains a Bohr set for some$$i \in \{1, \ldots , r\}$$. This is a strengthening of a theorem of Bergelson, Furstenberg and Weiss. All results are quantitative in the sense that the radius and rank of the Bohr set obtained depends only on the indices$$[G:\phi _j(G)]$$, the upper Banach density ofA(in (1)), or the number of sets in the given partition (in (2) and (3)).more » « less
-
Abstract For a connected reductive groupGover a nonarchimedean local fieldFof positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter$${\mathcal {L}}^{ss}(\pi )$$to each irreducible representation$$\pi $$. Our first result shows that the Genestier-Lafforgue parameter of a tempered$$\pi $$can be uniquely refined to a tempered L-parameter$${\mathcal {L}}(\pi )$$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of$${\mathcal {L}}^{ss}(\pi )$$for unramifiedGand supercuspidal$$\pi $$constructed by induction from an open compact (modulo center) subgroup. If$${\mathcal {L}}^{ss}(\pi )$$is pure in an appropriate sense, we show that$${\mathcal {L}}^{ss}(\pi )$$is ramified (unlessGis a torus). If the inducing subgroup is sufficiently small in a precise sense, we show$$\mathcal {L}^{ss}(\pi )$$is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is$${\mathbb {P}}^1$$and a simple application of Deligne’s Weil II.more » « less
An official website of the United States government

