skip to main content

Title: “Looking Outside of my Bubble”: Whiteness-at-Work in Mathematics Faculty Sensemaking about Serving Latin* Students
Professional development (PD) is often recommended to equip faculty to serve racially minoritized students through instruction. However, limited work has examined equity-oriented PD for mathematics faculty, who often hold views of instruction as race-neutral. This contributed report explores the influence of a two-year PD for faculty in a mathematics department engaged in equity-oriented reform at a Hispanic-Serving Institution. We present two cases of white faculty members who demonstrated a limited ability to interrogate their white racial identities in relation to their instructional impact, despite their engagement in a sustained PD designed to promote racial equity. Implications are provided for equity-oriented PD for mathematics faculty.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Cook, S.; Katz, B.; Moore-Russo, D.
Publisher / Repository:
Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education (SIGMAA on RUME)
Date Published:
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["whiteness","faculty","pedagogical reasoning","Hispanic-Serving Institutions"]
Medium: X
Omaha, NE
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND. Calculus instruction is underexamined as a source of racialized and gendered inequity in higher education, despite research that documents minoritized students’ marginalizing experiences in undergraduate mathematics classes. This study fills this research gap by investigating mathematics faculty’s perceptions of the significance of race and gender to calculus instruction at a large, public, historically white research university. METHODS. Theories of colorblind racism and dysconsciousness guided a critical discourse analysis of seven undergraduate calculus faculty’s perceptions of instructional events. FINDINGS. Our analysis revealed two dominant discourses: (i) Race and gender are insignificant social markers in undergraduate calculus; and (ii) Instructional events can be objectively deemed race- and gender-neutral. We illustrate how calculus faculty varyingly engaged these colorblind discourses as well as discourses that challenged such conceptions of instruction. We also highlight how faculty dysconsciousness in reports of instructional practices reflect potential operationalization of dominant discourses that reinforce colorblind racism. CONTRIBUTION. With limited research on faculty perspectives on racial equity in mathematics, our study documents how color-evasive, gender-neutral discourses among mathematics faculty shape orientations to instruction that reinforce the gatekeeping role of calculus in STEM higher education. Implications are provided for race- and gender-conscious undergraduate mathematics instruction and faculty development. 
    more » « less
  2. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  3. The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. The “for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a community of practice that would prepare and support teachers with varying degrees of engineering training instruction as they implemented the yearlong course. The perspectives of four out of nine educators were examined during a weeklong, intensive E4USA PD. Two of four educators were considered ‘novices’; one with a background in music and the other in history. The remaining two educators were deemed ‘veterans’ with a total of 15 years of experience as engineers and more than 20 years as engineering educators. Data sources consist of focus groups, surveys, and artifacts created during the PD (e.g., educators’ responses to reflection prompts and letters written to welcome the next cohort). Focus group data is currently being analyzed using inductive coding and the constant comparative method in order to identify emergent themes that speak to the past experience or inexperience of educators with engineering. Artifacts were used to: 1) Triangulate the findings generated from the analysis of focus group, and 2) Further understand how the veteran educators supported the novice educators. We will also use quantitative survey data to examine descriptive statistics, observed score bivariate correlations, and differences in mean scores across novices and veterans to further examine potential common and unique experiences for these educators. The results aim to highlight how the inclusion of educators with a broad spectrum of past experiences with engineering and engineering education can increase educators’ empathy towards students who may be equally hesitant about engineering. The findings from this study are expected to result in implications for how PD and a community of practice may be developed to allow for reciprocal support and mentoring. Results will inform future efforts of E4USA and aim to change the structure of high school engineering education nationwide. 
    more » « less
  4. In this essay, we share historical and structural components of mentoring within institutions of higher education and grapple with technical and moral obligations of support. We argue for more humanizing approaches that embed personal, social, and cultural aspects of mentoring, and seek to disrupt the purposes of mentoring, and for whom? Using a critical approach, we promote justice-oriented and equity-driven models of mentoring that account for excessive teaching loads and service commitments for faculty at minority-serving institutions and Black and Brown faculty at predominantly White institutions. Current promotion and tenure publish or perish models neglect the intellectual and scholarly contributions made through teaching and service and therefore hold the same level of expectations for engagement in and dissemination of research. We share our own stories as Faculty of Color navigating institutional structures during the promotion and tenure process, while also negotiating incongruent cultures of our personal and professional lives. Furthermore, we address the need for mentoring and networking within exclusionary spaces to support the productivity and critical research agendas of Black and Brown faculty that often challenge the white heteronormative cultures of our institutions, professional organizations, peer-reviewed journals, and prestigious funding mechanisms. Implications of this essay include an acknowledgment of oppressive systems that early-career Black and Brown faculty often navigate and a call for diverse mentoring programs and supports that conform with and validate our lives and needs. Furthermore, we provide recommendations on evidence-based resources and approaches that are available to science, technology, engineering, and mathematics faculty and science educators. 
    more » « less
  5. Background: The field of mathematics education has made progress toward generating a set of instructional practices that could support improvements in the learning opportunities made available to groups of students who historically have been underserved and marginalized. Studies that contribute to this growing body of work are often conducted in learning environments that are framed as “successful.” As a researcher who is concerned with issues of equity and who acknowledges the importance of closely attending to the quality of the mathematical activity in which students are being asked to engage, my stance on “successful learning environments” pulls from both Gutiérrez’s descriptions of what characterizes classrooms as aiming for equity and the emphasis on the importance of conceptually oriented goals for student learning that is outlined in documents like the Standards. Though as a field we are growing in our knowledge of practices that support these successful learning environments, this knowledge has not yet been reflected in many of the observational tools, rubrics, and protocols used to study these environments. In addition, there is a growing need to develop empirically grounded ways of attending to the extent to which the practices that are being outlined in research literature actually contribute to the “success” of these learning environments. Purpose: The purpose of this article is to explore one way of meeting this growing need by describing the complex work of developing a set of classroom observation rubrics (the Equity and Access Rubrics for Mathematics Instruction, EAR-MI) designed to support efforts in identifying and observing critical features of classrooms characterized as having potential for “success.” In developing the rubrics, I took as my starting place findings from an analysis that compared a set of classrooms that were characterized as demonstrating aspects of successful learning environments and a set of classrooms that were not characterized as successful. This paper not only describes the process of developing the rubrics, but also outlines some of the qualitative differences that distinguished more and less effective examples of the practices the rubrics are designed to capture. Research Design: In designing the rubrics, I engaged in multiple cycles of qualitative analyses of video data collected from a large-scale study. Specifically, I iteratively designed, tested, and revised the developing rubrics while consistently collaborating with, consulting with, and receiving feedback from different experts in the field of education. Conclusions: Although I fully acknowledge and recognize that there are several tensions and limitations of this work, I argue that developing rubrics like the EAR-MI is still worthwhile. One reason that I give for continuing these types of efforts is that it contributes to the work of breaking down forms of practice into components and identifying key aspects of specific practices that are critical for supporting student learning in ways that make potentially productive routines of action visible to and learnable by others, which may ultimately contribute to the development of more successful learning environments. I also argue that rubrics like the EAR-MI have the potential to support researchers in developing stronger evidence of the effectiveness of practices that prior research has identified as critical for marginalized students and in more accurately and concretely identifying and describing learning environments as having potential for “success.” 
    more » « less