Acoustic streaming has been widely used in microfluidics to manipulate various micro−/nano-objects. In this work, acoustic streaming activated by interdigital transducers (IDT) immersed in highly viscous oil is studied numerically and experimentally. In particular, we developed a modeling strategy termed the “slip velocity method” that enables a 3D simulation of surface acoustic wave microfluidics in a large domain (4 × 4 × 2 mm 3 ) and at a high frequency (23.9 MHz). The experimental and numerical results both show that on top of the oil, all the acoustic streamlines converge at two horizontal stagnation points above the two symmetric sides of the IDT. At these two stagnation points, water droplets floating on the oil can be trapped. Based on these characteristics of the acoustic streaming field, we designed a surface acoustic wave microfluidic device with an integrated IDT array fabricated on a 128° YX LiNbO 3 substrate to perform programmable, contactless droplet manipulation. By activating IDTs accordingly, the water droplets on the oil can be moved to the corresponding traps. With its excellent capability for manipulating droplets in a highly programmable, controllable manner, our surface acoustic wave microfluidic devices are valuable for on-chip contactless sample handling and chemical reactions. 
                        more » 
                        « less   
                    
                            
                            Oil Ganglia Mobility Enhancement by Droplet Formation for Surfactant Flooding in Porous Media
                        
                    
    
            We study the formation of oil droplets from an initially trapped large oil ganglion under surfactant flooding, using a microfluidic device consisting of a two-dimensional array of regularly spaced square posts. We observe that above a critical capillary number for oil mobilization, breakage of the ganglion results in the formation of either trapped patches spanning multiple pores or numerous mobile droplets that exit the device at a velocity comparable to the average flooding fluid velocity. These mobile droplets, however, are only observed when above a secondary capillary number threshold. The formation of these droplets is found to involve the simultaneous occurrence of three different passive droplet generation mechanisms where a droplet is formed as it is pulled by perpendicular fluid flow, as it is pulled by co-axial fluid flow, and or as it splits due to collision with a post. Our results show that oil breakthroughs only occur when the oil is in the form of mobile drop- lets, suggesting that droplet formation can be an important condition for the mobility of residual oil in porous media. Additionally, this post-array microfluidic device can be used for the production of monodisperse droplets whose size can be controlled by the spacing of the posts. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2011754
- PAR ID:
- 10501581
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Transport in Porous Media
- Volume:
- 151
- Issue:
- 3
- ISSN:
- 0169-3913
- Page Range / eLocation ID:
- 585 to 597
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a water-in-oil droplet microfluidic trap array capable of modulating the distance between co-encapsulated cell pairs through microvortex formation. We demonstrate that vortex shape and periodicity can be directly controlled by the continuous phase flow rate. Explicit equations for the recirculation time inside droplet microvortices were derived by approximating the velocity fields through analytic solutions for the flow inside and outside of a spherical droplet. Comparison of these expressions against Particle Tracking Velocimetry (PTV) measurements of K562 (leukemia) cells circulating inside 50 μm droplets showed excellent theoretical agreement.more » « less
- 
            Capillary droplets form due to surface tension when two immiscible fluids are mixed. We describe the motion of gravity-driven capillary droplets flowing through narrow constrictions and obstacle arrays in both simulations and experiments. Our new capillary deformable particle model recapitulates the shape and velocity of single oil droplets in water as they pass through narrow constrictions in microfluidic chambers. Using this experimentally validated model, we simulate the flow and clogging of single capillary droplets in narrow channels and obstacle arrays and find several important results. First, the capillary droplet speed profile is nonmonotonic as the droplet exits the narrow orifice, and we can tune the droplet properties so that the speed overshoots the terminal speed far from the constriction. Second, in obstacle arrays, we find that extremely deformable droplets can wrap around obstacles, which leads to decreased average droplet speed in the continuous flow regime and increased probability for clogging in the regime where permanent clogs form. Third, the wrapping mechanism causes the clogging probability in obstacle arrays to become nonmonotonic with surface tension Γ. At large Γ, the droplets are nearly rigid and the clogging probability is large since the droplets can not squeeze through the gaps between obstacles. With decreasing Γ, the clogging probability decreases as the droplets become more deformable. However, in the small-Γ limit, the clogging probability increases since the droplets are extremely deformable and wrap around the obstacles. The results from these studies are important for developing a predictive understanding of capillary droplet flows through complex and confined geometries.more » « less
- 
            null (Ed.)A multifunctional microfluidic platform combining on-demand aqueous-phase droplet generation, multi-droplet storage, and controlled merging of droplets selected from a storage library in a single integrated microfluidic device is described. A unique aspect of the technology is a microfluidic trap design comprising a droplet trap chamber and lateral bypass channels integrated with a microvalve that supports the capture and merger of multiple droplets over a wide range of individual droplet sizes. A storage unit comprising an array of microfluidic traps operates in a first-in first-out manner, allowing droplets stored within the library to be analyzed before sequentially delivering selected droplets to a downstream merging zone, while shunting other droplets to waste. Performance of the microfluidic trap is investigated for variations in bypass/chamber hydrodynamic resistance ratio, micro-chamber geometry, trapped droplet volume, and overall flow rate. The integrated microfluidic platform is then utilized to demonstrate the operational steps necessary for cell-based assays requiring the isolation of defined cell populations with single cell resolution, including encapsulation of individual cells within an aqueous-phase droplet carrier, screening or incubation of the immobilized cell-encapsulated droplets, and generation of controlled combinations of individual cells through the sequential droplet merging process. Beyond its utility for cell analysis, the presented platform represents a versatile approach to robust droplet generation, storage, and merging for use in a wide range of droplet-based microfluidics applications.more » « less
- 
            We experimentally study the transition from droplet to wave regimes in microfluidic liquid–liquid multiphase flows having large differences in viscosity. A unified approach based on periodic pattern analysis is employed to study relationships between dispersed and separated flow regimes, including dripping, jetting, capillary waves, inertial waves and core–annular flows over a wide range of flow rates and viscosity contrasts. We examine the morphology and dynamics of each flow regime based on wavelength, frequency and velocity of repeating unit cells to elucidate their connections and to develop predictive capabilities based on dimensionless control parameters. We demonstrate in particular that pattern selection is contingent upon the propagation velocity of droplets and waves at the transition. We also investigate microfluidic wave breaking phenomena with the formation of ligaments and droplets from wave crests in both capillary and inertial wave regimes. This work expands conventional multiphase flow regimes observed in microchannels and shows new routes to disperse highly viscous materials using interfacial waves dynamics in confined microsystems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    