ABSTRACT We compare the two largest galaxy morphology catalogues, which separate early- and late-type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of ∼21 mag. The methodologies used for the construction of the catalogues include differences such as the cutout sizes, the labels used for training, and the input to the CNN – monochromatic images versus gri-band normalized images. In addition, one catalogue is trained using bright galaxies observed with DES (i < 18), while the other is trained with bright galaxies (r < 17.5) and ‘emulated’ galaxies up to r-band magnitude 22.5. Despite the different approaches, the agreement between the two catalogues is excellent up to i < 19, demonstrating that CNN predictions are reliable for samples at least one magnitude fainter than the training sample limit. It also shows that morphological classifications based on monochromatic images are comparable to those based on gri-band images, at least in the bright regime. At fainter magnitudes, i > 19, the overall agreement is good (∼95 per cent), but is mostly driven by the large spiral fraction in the two catalogues. In contrast, the agreement within the elliptical population is not as good, especially at faint magnitudes. By studying the mismatched cases, we are able to identify lenticular galaxies (at least up to i < 19), which are difficult to distinguish using standard classification approaches. The synergy of both catalogues provides an unique opportunity to select a population of unusual galaxies.
more »
« less
A comprehensive suite of earthquake catalogues for the 2016-2017 Central Italy seismic sequence
A set of six large catalogues documenting the seismic sequence that occurred in central Italy between 2016 and 2017, characterized by a cascade of four MW5.5–6.5 events. The earthquake catalogues possess different levels of resolution and completeness that result from progressive enhancements in both detection sensitivity and hypocentral location determination. These quality differences reflect the subsequent application of advanced methods.
more »
« less
- Award ID(s):
- 1759782
- PAR ID:
- 10501595
- Publisher / Repository:
- NERC EDS National Geoscience Data Centre
- Date Published:
- Subject(s) / Keyword(s):
- near real-time earthquake catalogues increasing precision and resolution earthquake catalogues fault planes
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The protracted nature of the 2016-2017 central Italy seismic sequence, with multiple damaging earthquakes spaced over months, presented serious challenges for the duty seismologists and emergency managers as they assimilated the growing sequence to advise the local population. Uncertainty concerning where and when it was safe to occupy vulnerable structures highlighted the need for timely delivery of scientifically based understanding of the evolving hazard and risk. Seismic hazard assessment during complex sequences depends critically on up-to-date earthquake catalogues—i.e., data on locations, magnitudes, and activity of earthquakes—to characterize the ongoing seismicity and fuel earthquake forecasting models. Here we document six earthquake catalogues of this sequence that were developed using a variety of methods. The catalogues possess different levels of resolution and completeness resulting from progressive enhancements in the data availability, detection sensitivity, and hypocentral location accuracy. The catalogues range from real-time to advanced machine-learning procedures and highlight both the promises as well as the challenges of implementing advanced workflows in an operational environment.more » « less
-
ABSTRACT We present two catalogues of active galactic nucleus (AGN) candidates selected from the latest data of two all-sky surveys – Data Release 2 of the Gaia mission and the unWISE catalogue of the Wide-field Infrared Survey Explorer (WISE). We train a random forest classifier to predict the probability of each source in the Gaia–unWISE joint sample being an AGN, PRF, based on Gaia astrometric and photometric measurements and unWISE photometry. The two catalogues, which we designate C75 and R85, are constructed by applying different PRF threshold cuts to achieve an overall completeness of 75 per cent (≈90 per cent at GaiaG ≤ 20 mag) and reliability of 85 per cent, respectively. The C75 (R85) catalogue contains 2734 464 (2182 193) AGN candidates across the effective 36 000 deg2 sky, of which ≈0.91 (0.52) million are new discoveries. Photometric redshifts of the AGN candidates are derived by a random forest regressor using Gaia and WISE magnitudes and colours. The estimated overall photometric redshift accuracy is 0.11. Cross-matching the AGN candidates with a sample of known bright cluster galaxies, we identify a high-probability strongly lensed AGN candidate system, SDSS J1326+4806, with a large image separation of 21$${^{\prime\prime}_{.}}$$06. All the AGN candidates in our catalogues will have ∼5-yr long light curves from Gaia by the end of the mission, and thus will be a great resource for AGN variability studies. Our AGN catalogues will also be helpful in AGN target selections for future spectroscopic surveys, especially those in the Southern hemisphere. The C75 catalogue can be downloaded at https://www.ast.cam.ac.uk/~ypshu/AGN_Catalogues.html.more » « less
-
ABSTRACT We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0 × 30.0 arcsec2 and 16.3 × 15.1 arcsec2, respectively. The median root mean square (RMS) noise values are 186 $$\mu$$Jy beam−1 (960 MHz) and 165 $$\mu$$Jy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.more » « less
-
We quantify the frequency of companions of low-redshift (0.013 < z < 0.0252) dwarf galaxies (2 × 108 M⊙ < Mstar < 5 × 109 M⊙) that are isolated from more massive galaxies in SDSS and compare against cosmological expectations using mock observations of the Illustris simulation. Dwarf multiples are defined as two or more dwarfs that have angular separations >55 arcsec, projected separations rp < 150 kpc, and relative line-of-sight velocities ΔVLOS < 150 km s-1. While the mock catalogues predict a factor of two more isolated dwarfs than observed in SDSS, the mean number of observed companions per dwarf is Nc ˜ 0.04, in good agreement with Illustris when accounting for SDSS sensitivity limits. Removing these limits in the mock catalogues predicts Nc ˜ 0.06 for future surveys (LSST, DESI), which will be complete to Mstar = 2 × 108 M⊙. The 3D separations of mock dwarf multiples reveal a contamination fraction of ˜40 per cent in observations from projection effects. Most isolated multiples are pairs; triples are rare and it is cosmologically improbable that bound groups of dwarfs with more than three members exist within the parameter range probed in this study. We find that <1 per cent of LMC-analogues in the field have an SMC-analogue companion. The fraction of dwarf "Major Pairs" (stellar mass ratio >1:4) steadily increases with decreasing Primary stellar mass, whereas the cosmological "Major Merger rate" (per Gyr) has the opposite behaviour. We conclude that cosmological simulations can be reliably used to constrain the fraction of dwarf mergers across cosmic time.more » « less
An official website of the United States government
