skip to main content

Title: The ASKAP EMU Early Science Project: radio continuum survey of the Small Magellanic Cloud
ABSTRACT We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0 × 30.0 arcsec2 and 16.3 × 15.1 arcsec2, respectively. The median root mean square (RMS) noise values are 186 $\mu$Jy beam−1 (960 MHz) and 165 $\mu$Jy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
1202 to 1219
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We present new radio continuum images and a source catalogue from the MeerKAT survey in the direction of the Small Magellanic Cloud. The observations, at a central frequency of 1.3 GHz across a bandwidth of 0.8 GHz, encompass a field of view ∼7° × 7° and result in images with resolution of 8 arcsec. The median broad-band Stokes I image Root Mean Squared noise value is ∼11 μJy beam−1. The catalogue produced from these images contains 108 330 point sources and 517 compact extended sources. We also describe a UHF (544–1088 MHz) single pointing observation. We report the detection of a new confirmed Supernova Remnant (SNR; MCSNR J0100–7211) with an X-ray magnetar at its centre and 10 new SNR candidates. This is in addition to the detection of 21 previously confirmed SNRs and two previously noted SNR candidates. Our new SNR candidates have typical surface brightness an order of magnitude below those previously known, and on the whole they are larger. The high sensitivity of the MeerKAT survey also enabled us to detect the bright end of the SMC Planetary Nebulae (PNe) sample – point-like radio emission is associated with 38 of 102 optically known PNe, of which 19 are new detections. Lastly, we present the detection of three foreground radio stars amidst 11 circularly polarized sources, and a few examples of morphologically interesting background radio galaxies from which the radio ring galaxy ESO 029–G034 may represent a new type of radio object.

    more » « less
  2. Abstract We report the discovery of a highly circularly polarized, variable, steep-spectrum pulsar in the Australian Square Kilometre Array Pathfinder (ASKAP) Variables and Slow Transients (VAST) survey. The pulsar is located about 1° from the center of the Large Magellanic Cloud, and has a significant fractional circular polarization of ∼20%. We discovered pulsations with a period of 322.5 ms, dispersion measure (DM) of 157.5 pc cm −3 , and rotation measure (RM) of +456 rad m −2 using observations from the MeerKAT and the Parkes telescopes. This DM firmly places the source, PSR J0523−7125, in the Large Magellanic Cloud (LMC). This RM is extreme compared to other pulsars in the LMC (more than twice that of the largest previously reported one). The average flux density of ∼1 mJy at 1400 MHz and ∼25 mJy at 400 MHz places it among the most luminous radio pulsars known. It likely evaded previous discovery because of its very steep radio spectrum (spectral index α ≈ −3, where S ν ∝ ν α ) and broad pulse profile (duty cycle ≳35%). We discuss implications for searches for unusual radio sources in continuum images, as well as extragalactic pulsars in the Magellanic Clouds and beyond. Our result highlighted the possibility of identifying pulsars, especially extreme pulsars, from radio continuum images. Future large-scale radio surveys will give us an unprecedented opportunity to discover more pulsars and potentially the most distant pulsars beyond the Magellanic Clouds. 
    more » « less

    Covering $\sim 5600\, \deg ^2$ to rms sensitivities of ∼70−100 $\mu$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $0.5 \le \theta \lt 5{^\circ }$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $b_{\rm C}= 2.14^{+0.22}_{-0.20}$ (assuming constant bias) and $b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$ (for an evolving model, inversely proportional to the growth factor), corresponding to $b_{\rm E}= 2.81^{+0.24}_{-0.22}$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $b_{\rm C}= 2.02^{+0.17}_{-0.16}$ and $b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.

    more » « less

    Radio continuum observations offer a new window on compact objects in globular clusters compared to typical X-ray or optical studies. As part of the MAVERIC survey, we have used the Australia Telescope Compact Array to carry out a deep (median central noise level ≈4 $\mu$Jy beam-1) radio continuum survey of 26 southern globular clusters at central frequencies of 5.5 and 9.0 GHz. This paper presents a catalogue of 1285 radio continuum sources in the fields of these 26 clusters. Considering the surface density of background sources, we find significant evidence for a population of radio sources in seven of the 26 clusters, and also identify at least 11 previously known compact objects (six pulsars and five X-ray binaries). While the overall density of radio continuum sources with 7.25-GHz flux densities ≳ 20 $\mu$Jy in typical globular clusters is relatively low, the survey has already led to the discovery of several exciting compact binaries, including a candidate ultracompact black hole X-ray binary in 47 Tuc. Many of the unclassified radio sources near the centres of the clusters are likely to be true cluster sources, and multiwavelength follow-up will be necessary to classify these objects and better understand the demographics of accreting compact binaries in globular clusters.

    more » « less
  5. We present observations of linear polarisation in the southern radio lobe of Centaurus A, conducted during commissioning of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. We used 16 antennas to observe a 30 square degree region in a single 12-h pointing over a 240 MHz band centred on 913 MHz. Our observations achieve an angular resolution of 26 × 33 arcseconds (480 parsecs), a maximum recoverable angular scale of 30 arcminutes, and a full-band sensitivity of 85 μ Jy beam − 1 . The resulting maps of polarisation and Faraday rotation are amongst the most detailed ever made for radio lobes, with order 10 5 resolution elements covering the source. We describe several as-yet unreported observational features of the lobe, including its detailed peak Faraday depth structure, and intricate networks of depolarised filaments. These results demonstrate the exciting capabilities of ASKAP for widefield radio polarimetry. 
    more » « less