skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inland Waters can Act as Nitrous Oxide Sinks: Observation and Modeling Reveal that Nitrous Oxide Undersaturation May Partially Offset Emissions
Abstract Inland waters are significant, yet highly uncertain, natural sources of nitrous oxide (N2O). Many emission models assume that N2O is only emitted from freshwaters, and that N2O sink behavior is negligible. However, observational studies have reported N2O undersaturation, suggesting that inland waters can act as N2O sinks due to net N2O consumption. This study leverages data from the National Ecological Observatory Network (NEON) and an existing global emission model to examine the prevalence of and controls on N2O undersaturation in streams, rivers, and lakes across scales and biomes. We find that N2O undersaturation is prevalent in the NEON data set (14%–30% of samples) and process‐based model outputs (38%), occurring across biomes and spatial scales. Failing to account for undersaturation in the NEON data set could result in an 100% overestimation of N2O emissions. These results show that consideration of N2O sink behavior is needed for accurate emission estimates.  more » « less
Award ID(s):
2217817
PAR ID:
10501624
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr−1in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr−1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories. 
    more » « less
  2. Summary Microbial enzymes often occur as distinct variants that share the same substrate but differ in substrate affinity, sensitivity to environmental conditions, or phylogenetic ancestry. Determining where variants occur in the environment helps identify thresholds that constrain microbial cycling of key chemicals, including the greenhouse gas nitrous oxide (N2O). To understand the enzymatic basis of N2O cycling in the ocean, we mined metagenomes to characterize genes encoding bacterial nitrous oxide reductase (NosZ) catalyzing N2O reduction to N2. We examined data sets from diverse biomes but focused primarily on those from oxygen minimum zones where N2O levels are often elevated. With few exceptions, marinenosZdata sets were dominated by ‘atypical’ clade II gene variants. AtypicalnosZhas been associated with low oxygen, enhanced N2O affinity, and organisms lacking enzymes for complete denitrification, i.e., non‐denitrifiers. AtypicalnosZ often occurred in metagenome‐assembled genomes (MAGs) with nitrate or nitrite respiration genes, although MAGs with genes for complete denitrification were rare. We identified atypicalnosZ in several taxa not previously associated with N2O consumption, in addition to known N2O‐associated groups. The data suggest that marine environments generally select for high N2O‐scavenging ability across diverse taxa and have implications for how N2O concentration may affect N2O removal rates. 
    more » « less
  3. Abstract Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present‐day greenhouse gas (GHG) budgets. We compare bottom‐up (data‐driven upscaling and process‐based models) and top‐down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom‐up approaches estimate higher land‐to‐atmosphere fluxes for all GHGs. Both bottom‐up and top‐down approaches show a sink of CO2in natural ecosystems (bottom‐up: −29 (−709, 455), top‐down: −587 (−862, −312) Tg CO2‐C yr−1) and sources of CH4(bottom‐up: 38 (22, 53), top‐down: 15 (11, 18) Tg CH4‐C yr−1) and N2O (bottom‐up: 0.7 (0.1, 1.3), top‐down: 0.09 (−0.19, 0.37) Tg N2O‐N yr−1). The combined global warming potential of all three gases (GWP‐100) cannot be distinguished from neutral. Over shorter timescales (GWP‐20), the region is a net GHG source because CH4dominates the total forcing. The net CO2sink in Boreal forests and wetlands is largely offset by fires and inland water CO2emissions as well as CH4emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process‐based models and the compilation of process‐model ensembles for CH4and N2O. Discrepancies between bottom‐up and top‐down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well‐distributed in situ GHG measurements and improved resolution in upscaling techniques. 
    more » « less
  4. Abstract The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2O emissions in the contiguous United States during 1900–2019. Newly developed geospatial data of land‐use history and crop‐specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc‐min by 5 arc‐min. The model simulation indicates that the U.S. soil N2O emissions totaled 0.97 ± 0.06 Tg N year−1during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year−1in the 1900s to 0.51 Tg N year−1in the 2010s. More than 90% of soil N2O emission increase in agricultural soils is attributed to human land‐use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high‐emission factors, responsible for nearly two‐thirds of direct agricultural soil N2O emission increase since 1900. Our study suggests a large N2O mitigation potential in cropland and the importance of exploring crop‐specific mitigation strategies and prioritizing management alternatives for targeted crop types. 
    more » « less
  5. Abstract Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought‐induced saltwater intrusion on CH4and N2O emissions remain unclear. In this study, a process‐driven biogeochemistry model, Tidal Freshwater Wetland DeNitrification‐DeComposition (TFW‐DNDC), was applied to examine the responses of CH4and N2O emissions to episodic drought‐induced saltwater intrusion in TFFW along the Waccamaw River and Savannah River, USA. These sites encompass landscape gradients of both surface and porewater salinity as influenced by Atlantic Ocean tides superimposed on periodic droughts. Surprisingly, CH4and N2O emission responsiveness to coastal droughts and drought‐induced saltwater intrusion varied greatly between river systems and among local geomorphologic settings. This reflected the complexity of wetland CH4and N2O emissions and suggests that simple linkages to salinity may not always be relevant, as non‐linear relationships dominated our simulations. Along the Savannah River, N2O emissions in the moderate‐oligohaline tidal forest site tended to increase dramatically under the drought condition, while CH4emission decreased. For the Waccamaw River, emissions of both CH4and N2O in the moderate‐oligohaline tidal forest site tended to decrease under the drought condition, but the capacity of the moderate‐oligohaline tidal forest to serve as a carbon sink was substantially reduced due to significant declines in net primary productivity and soil organic carbon sequestration rates as salinity killed the dominant freshwater vegetation. These changes in fluxes of CH4and N2O reflect crucial synergistic effects of soil salinity and water level on C and N dynamics in TFFW due to drought‐induced seawater intrusion. 
    more » « less