We study the category of S p \mathbf {Sp} -equivariant modules over the infinite variable polynomial ring, where S p \mathbf {Sp} denotes the infinite symplectic group. We establish a number of results about this category: for instance, we show that every finitely generated module M M fits into an exact triangle T → M → F → T \to M \to F \to where T T is a finite length complex of torsion modules and F F is a finite length complex of “free” modules; we determine the Grothendieck group; and we (partially) determine the structure of injective modules. We apply these results to show that the twisted commutative algebras Sym ( C ∞ ⊕ ⋀ 2 C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \bigwedge ^2{\mathbf {C}^{\infty }}) and Sym ( C ∞ ⊕ Sym 2 C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \operatorname {Sym}^2{\mathbf {C}^{\infty }}) are noetherian, which are the strongest results to date of this kind. We also show that the free 2-step nilpotent twisted Lie algebra and Lie superalgebra are noetherian.
more »
« less
Finite $F$-representation type for homogeneous coordinate rings of non-Fano varieties
Finite $$F$$-representation type is an important notion in characteristic-$$p$$commutative algebra, but explicit examples of varieties with or without thisproperty are few. We prove that a large class of homogeneous coordinate ringsin positive characteristic will fail to have finite $$F$$-representation type. Todo so, we prove a connection between differential operators on the homogeneouscoordinate ring of $$X$$ and the existence of global sections of a twist of$$(\mathrm{Sym}^m \Omega_X)^\vee$$. By results of Takagi and Takahashi, thisallows us to rule out FFRT for coordinate rings of varieties with$$(\mathrm{Sym}^m \Omega_X)^\vee$$ not ``positive''. By using results positivityand semistability conditions for the (co)tangent sheaves, we show that severalclasses of varieties fail to have finite $$F$$-representation type, includingabelian varieties, most Calabi--Yau varieties, and complete intersections ofgeneral type. Our work also provides examples of the structure of the ring ofdifferential operators for non-$$F$$-pure varieties, which to this point havelargely been unexplored.
more »
« less
- Award ID(s):
- 1840190
- PAR ID:
- 10501633
- Publisher / Repository:
- episciences
- Date Published:
- Journal Name:
- Épijournal de Géométrie Algébrique
- Volume:
- Volume 7
- ISSN:
- 2491-6765
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Discrete and continuous frames can be considered as positive operator-valued measures (POVMs) that have integral representations using rank-one operators. However, not every POVM has an integral representation. One goal of this paper is to examine the POVMs that have finite-rank integral representations. More precisely, we present a necessary and sufficient condition under which a positive operator-valued measure $$F: \Omega \to B(H)$$ has an integral representation of the form $$F(E) =\sum_{k=1}^{m} \int_{E}\, G_{k}(\omega)\otimes G_{k}(\omega) d\mu(\omega)$$ for some weakly measurable maps $$G_{k} \ (1\leq k\leq m) $$ from a measurable space $$\Omega$$ to a Hilbert space $$\mathcal{H}$$ and some positive measure $$\mu$$ on $$\Omega$$. Similar characterizations are also obtained for projection-valued measures. As special consequences of our characterization we settle negatively a problem of Ehler and Okoudjou about probability frame representations of probability POVMs, and prove that an integral representable probability POVM can be dilated to a integral representable projection-valued measure if and only if the corresponding measure is purely atomic.more » « less
-
We prove that F-injectivity localizes, descends under faithfully flat homomorphisms, and ascends under flat homomorphisms with Cohen–Macaulay and geometrically F-injective fibers, all for arbitrary Noetherian rings of prime characteristic. As a consequence, we show that the F-injective locus is open on most rings arising in arithmetic and geometry. As a geometric application, we prove that over an algebraically closed field of characteristic p > 3, generic projection hypersurfaces associated to suitably embedded smooth projective varieties of dimension ≤5 are F-pure, and hence F-injective. This geometric result is the positive characteristic analogue of a theorem of Doherty.more » « less
-
Abstract Birational properties of generically finite morphisms of algebraic varieties can be understood locally by a valuation of the function field ofX. In finite extensions of algebraic local rings in characteristic zero algebraic function fields which are dominated by a valuation, there are nice monomial forms of the mapping after blowing up enough, which reflect classical invariants of the valuation. Further, these forms are stable upon suitable further blowing up. In positive characteristic algebraic function fields, it is not always possible to find a monomial form after blowing up along a valuation, even in dimension two. In dimension two and positive characteristic, after enough blowing up, there are stable forms of the mapping which hold upon suitable sequences of blowing up. We give examples showing that even within these stable forms, the forms can vary dramatically (erratically) upon further blowing up. We construct these examples in defect Artin–Schreier extensions which can have any prescribed distance.more » « less
-
We show that a projective variety with an int-amplified endomorphism of degree invertible in the base field satisfies Bott vanishing. This is a new way to analyze which varieties have nontrivial endomorphisms. In particular, we extend some classification results on varieties admitting endomorphisms (for Fano threefolds of Picard number one and several other cases) to any characteristic. The classification results in characteristic zero are due to Amerik–Rovinsky–Van de Ven, Hwang–Mok, Paranjape–Srinivas, Beauville, and Shao–Zhong. Our method also bounds the degree of morphisms into a given variety. Finally, we relate endomorphisms to global -regularity.more » « less
An official website of the United States government

