skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin-selective tunneling from nanowires of the candidate topological Kondo insulator SmB 6
Incorporating relativistic physics into quantum tunneling can lead to exotic behavior such as perfect transmission through Klein tunneling. Here, we probed the tunneling properties of spin-momentum-locked relativistic fermions by designing and implementing a tunneling geometry that uses nanowires of the topological Kondo insulator candidate samarium hexaboride. The nanowires are attached to the end of scanning tunneling microscope tips and used to image the bicollinear stripe spin order in the antiferromagnet Fe1.03Te with a Neel temperature of about 50 kelvin. The antiferromagnetic stripes become invisible above 10 kelvin concomitant with the suppression of the topological surface states in the tip. We further demonstrate that the direction of spin polarization is tied to the tunneling direction. Our technique establishes samarium hexaboride nanowires as ideal conduits for spin-polarized currents.  more » « less
Award ID(s):
2003784
PAR ID:
10501678
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Jelena Stajic
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
377
Issue:
6611
ISSN:
0036-8075
Page Range / eLocation ID:
1218 to 1222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications. 
    more » « less
  2. Abstract Magnetic tunnel junctions (MTJs), that consist of two ferromagnetic electrodes separated by an insulating barrier layer, have non-trivial fundamental properties associated with spin-dependent tunneling. Especially interesting are fully crystalline MTJs where spin-dependent tunneling is controlled by the symmetry group of wave vector. In this work, using first-principles quantum-transport calculations, we explore spin-dependent tunneling in fully crystalline SrRuO3/SrTiO3/SrRuO3(001) MTJs and predict tunneling magnetoresistance (TMR) of nearly 3000%. We demonstrate that this giant TMR effect is driven by symmetry matching (mismatching) of the incoming and outcoming Bloch states in the SrRuO3(001) electrodes and evanescent states in the SrTiO3(001) barrier. We argue that under the conditions of symmetry-controlled transport, spin polarization, whatever definition is used, is not a relevant measure of spin-dependent tunneling. In the presence of diffuse scattering, however, e.g. due to localized states in the band gap of the tunnel barrier, symmetry matching is no longer valid and TMR in SrRuO3/SrTiO3/SrRuO3(001) MTJs is strongly reduced. Under these conditions, the spin polarization of the interface transmission function becomes a valid measure of TMR. These results provide an important insight into understanding and optimizing TMR in all-oxide MTJs. 
    more » « less
  3. Abstract 5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter. 
    more » « less
  4. Multiferroic materials host both ferroelectricity and magnetism, offering potential for magnetic memory and spin transistor applications. Here, we report a multiferroic chalcogenide semiconductor Cu1−xMn1+ySiTe3(0.04 ≤x≤ 0.26; 0.03 ≤y≤ 0.15), which crystallizes in a polar monoclinic structure (Pmspace group). It exhibits a canted antiferromagnetic state below 35 kelvin, with magnetic hysteresis and remanent magnetization under 15 kelvin. We demonstrate multiferroicity and strong magnetoelectric coupling through magnetodielectric and magnetocurrent measurements. At 10 kelvin, the magnetically induced electric polarization reaches ~0.8 microcoulombs per square centimeter, comparable to the highest value in oxide multiferroics. We also observe possible room-temperature ferroelectricity. Given that multiferroicity is very rare among transition metal chalcogenides, our finding sets up a unique materials platform for designing multiferroic chalcogenides. 
    more » « less
  5. Abstract Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena. 
    more » « less