skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Antiferromagnetic Ordering in Quasi-One-Dimensional FeBi 4 S 7
We report a detailed study of the synthesis, composition, magnetic structure, and transport properties of a quasi-one-dimensional antiferromagnet FeBi4S7 that contains chains of edge-sharing FeS6 octahedra. High-resolution powder X-ray diffraction (PXRD) analysis, aided by variation of synthetic conditions, suggests that the true formula of the material is Fe1.2Bi3.8S7, due to the minor substitution of Fe into Bi sites. This finding is in agreement with crystal structure refinement from neutron powder diffraction data as well as with the small band gap of 0.23 eV determined from electrical transport measurements. Analysis of the neutron diffraction pattern collected below the antiferromagnetic ordering temperature of 64 K revealed ferromagnetic coupling between the Fe moments in the chains of FeS6 octahedra. The overall ordering, however, is antiferromagnetic due to the antiparallel arrangement of moments on neighboring chains. The collinear spin arrangement is described by a k-vector (1, 0, 1/2), which indicates doubling of the unit cell in the c direction and the loss of the C-centering translation as compared to the nuclear cell. The ferromagnetic nature of the sulfidebridged chains of Fe2+ ions in FeBi4S7, in contrast to the antiferromagnetic coupling between Fe moments in compounds with similar structural fragments, can be justified by the analysis of metric parameters that characterize the Fe−S bonding in these materials.  more » « less
Award ID(s):
2325147 1905843 2216125 2233902
PAR ID:
10501691
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Chemistry of Materials
Volume:
36
Issue:
7
ISSN:
0897-4756
Page Range / eLocation ID:
3417 to 3423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cu2TSiS4 (T = Mn and Fe) polycrystalline and single-crystal materials were prepared with high-temperature solid-state and chemical vapor transport methods, respectively. The polar crystal structure (space group Pmn21) consists of chains of corner-sharing and distorted CuS4, Mn/FeS4, and SiS4 tetrahedra, which is confirmed by Rietveld refinement using neutron powder diffraction data, X-ray single-crystal refinement, electron diffraction, energy-dispersive X-ray spectroscopy, and second harmonic generation (SHG) techniques. Magnetic measurements indicate that both compounds order antiferromagnetically at 8 and 14 K, respectively, which is supported by the temperature-dependent (100–2 K) neutron powder diffraction data. Additional magnetic reflections observed at 2 K can be modeled by magnetic propagation vectors k = (1/2,0,1/2) and k = (1/2,1/2,1/2) for Cu2MnSiS4 and Cu2FeSiS4, respectively. The refined antiferromagnetic structure reveals that the Mn/Fe spins are canted away from the ac plane by about 14°, with the total magnetic moments of Mn and Fe being 4.1(1) and 2.9(1) μB, respectively. Both compounds exhibit an SHG response with relatively modest second-order nonlinear susceptibilities. Density functional theory calculations are used to describe the electronic band structures. 
    more » « less
  2. null (Ed.)
    We report the magnetic properties and magnetic structure determination for a linear-chain antiferromagnet, MnBi2Se4. The crystal structure of this material contains chains of edge-sharing MnSe6 octahedra separated by Bi atoms. The magnetic behavior is dominated by intrachain antiferromagnetic (AFM) interactions, as demonstrated by the negative Weiss constant of −74 K obtained by the Curie–Weiss fit of the paramagnetic susceptibility measured along the easy-axis magnetization direction. The relative shift of adjacent chains by one-half of the chain period causes spin frustration due to interchain AFM coupling, which leads to AFM ordering at TN = 15 K. Neutron diffraction studies reveal that the AFM ordered state exhibits an incommensurate helimagnetic structure with the propagation vector k = (0, 0.356, 0). The Mn moments are arranged perpendicular to the chain propagation direction (the crystallographic b axis), and the turn angle around the helix is 128°. The magnetic properties of MnBi2Se4 are discussed in comparison to other linear-chain antiferromagnets based on ternary mixed-metal halides and chalcogenides. 
    more » « less
  3. Phase-pure polycrystalline Ba4RuMn2O10 was prepared and determined to adopt the noncentrosymmetric polar crystal structure (space group Cmc21) based on results of second harmonic generation, convergent beam electron diffraction, and Rietveld refinements using powder neutron diffraction data. The crystal structure features zigzag chains of corner-shared trimers, which contain three distorted face-sharing octahedra. The three metal sites in the trimers are occupied by disordered Ru/Mn with three different ratios: Ru1:Mn1 = 0.202(8):0.798(8), Ru2:Mn2 = 0.27(1):0.73(1), and Ru3:Mn3 = 0.40(1):0.60(1), successfully lowering the symmetry and inducing the polar crystal structure from the centrosymmetric parent compounds Ba4T3O10 (T = Mn, Ru; space group Cmca). The valence state of Ru/Mn is confirmed to be +4 according to X-ray absorption near-edge spectroscopy. Ba4RuMn2O10 is a narrow bandgap (∼0.6 eV) semiconductor exhibiting spin-glass behavior with strong magnetic frustration and antiferromagnetic interactions. 
    more » « less
  4. null (Ed.)
    Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I , Rb 2 Mn 3 (VO 4 ) 2 CO 3 , crystallizes in the trigonal crystal system in the space group P 3̄1 c , and compound II , K 2 Co 3 (VO 4 ) 2 CO 3 , crystallizes in the hexagonal space group P 6 3 / m . Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO 6 octahedra and MO 5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c -axis through tetrahedral [VO 4 ] groups. The MO 5 units are connected with each other by carbonate groups in the ab -plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO 6 -honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO 5 triangular lattice ordered below 2.3 K in a colinear ‘up–up–down’ fashion, followed by a planar ‘Y’ type magnetic structure. K 2 Co 3 (VO 4 ) 2 CO 3 ( II ) exhibits a canted antiferromagnetic ordering below T N = 8 K. The Curie–Weiss fit (200–350 K) gives a Curie–Weiss temperature of −42 K suggesting a dominant antiferromagnetic coupling in the Co 2+ magnetic sublattices. 
    more » « less
  5. The emergence of novel magnetic states becomes more likely when the inversion symmetry of the crystal field, relative to the center between two spins, is broken. We propose that placing magnetic spins in inequivalent sites in a polar lattice can promote a realization of nontrivial magnetic states and associated magnetic properties. To test our hypothesis, we study Fe2(SeO3)(H2O)3 as a model system that displays two distinct Fe(1) and Fe(2) magnetic sites in a polar structure (R3c space group). At low fields μ0H≤ 0.06 T, the material undergoes an antiferromagnetic ordering with TN1 = 77 K and a second transition at TN2≈ 4 K. At μ0H≥ 0.06 T and 74 K ≤T≤ 76 K, a positive entropy change of ∼0.12 mJ mol−1 K−1 can be associated with a metamagnetic transition to possibly nontrivial spin states. At zero field, Fe(1) is nearly fully ordered at T≈ 25 K, while Fe(2) features magnetic frustration down to T = 4 K. The magnetic ground state, a result corroborated by single-crystal neutron diffraction and 57Fe Mössbauer spectroscopy, is a noncollinear antiparallel arrangement of ferrimagnetic Fe(1)–Fe(2) dimers along the c-axis. The results demonstrate that placing distinct magnetic sites in a polar crystal lattice can enable a new pathway to modifying spin, orbital, and lattice degrees of freedom for unconventional magnetism. 
    more » « less