Cu2TSiS4 (T = Mn and Fe) polycrystalline and single-crystal materials were prepared with high-temperature solid-state and chemical vapor transport methods, respectively. The polar crystal structure (space group Pmn21) consists of chains of corner-sharing and distorted CuS4, Mn/FeS4, and SiS4 tetrahedra, which is confirmed by Rietveld refinement using neutron powder diffraction data, X-ray single-crystal refinement, electron diffraction, energy-dispersive X-ray spectroscopy, and second harmonic generation (SHG) techniques. Magnetic measurements indicate that both compounds order antiferromagnetically at 8 and 14 K, respectively, which is supported by the temperature-dependent (100–2 K) neutron powder diffraction data. Additional magnetic reflections observed at 2 K can be modeled by magnetic propagation vectors k = (1/2,0,1/2) and k = (1/2,1/2,1/2) for Cu2MnSiS4 and Cu2FeSiS4, respectively. The refined antiferromagnetic structure reveals that the Mn/Fe spins are canted away from the ac plane by about 14°, with the total magnetic moments of Mn and Fe being 4.1(1) and 2.9(1) μB, respectively. Both compounds exhibit an SHG response with relatively modest second-order nonlinear susceptibilities. Density functional theory calculations are used to describe the electronic band structures.
more »
« less
This content will become publicly available on June 25, 2025
Ba 4 RuMn 2 O 10 : A Noncentrosymmetric Polar Crystal Structure with Disordered Trimers
Phase-pure polycrystalline Ba4RuMn2O10 was prepared and determined to adopt the noncentrosymmetric polar crystal structure (space group Cmc21) based on results of second harmonic generation, convergent beam electron diffraction, and Rietveld refinements using powder neutron diffraction data. The crystal structure features zigzag chains of corner-shared trimers, which contain three distorted face-sharing octahedra. The three metal sites in the trimers are occupied by disordered Ru/Mn with three different ratios: Ru1:Mn1 = 0.202(8):0.798(8), Ru2:Mn2 = 0.27(1):0.73(1), and Ru3:Mn3 = 0.40(1):0.60(1), successfully lowering the symmetry and inducing the polar crystal structure from the centrosymmetric parent compounds Ba4T3O10 (T = Mn, Ru; space group Cmca). The valence state of Ru/Mn is confirmed to be +4 according to X-ray absorption near-edge spectroscopy. Ba4RuMn2O10 is a narrow bandgap (∼0.6 eV) semiconductor exhibiting spin-glass behavior with strong magnetic frustration and antiferromagnetic interactions.
more »
« less
- PAR ID:
- 10517536
- Publisher / Repository:
- Chemistry of Materials
- Date Published:
- Journal Name:
- Chemistry of Materials
- Volume:
- 36
- Issue:
- 12
- ISSN:
- 0897-4756
- Page Range / eLocation ID:
- 6053 to 6061
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm–3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level.more » « less
-
null (Ed.)A series of new Ce( iv ) based fluorides with two different compositions, Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) and Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) were synthesized as high quality single crystals via a mild hydrothermal route. The compounds with the composition Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) crystallize in the hexagonal crystal system with space group P 6 3 / mmc and are isotypic with the uranium analogs, whereas the Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) compounds crystallize in the trigonal space group P 3̄ c 1 and are isotypic with the uranium and thorium analogs Na x MM′ 6 F 30 (M′ = Th, U). The Cs 2 MCe 3 F 16 compounds exhibit a complex 3D crystal structure constructed of edge-sharing cerium trimers, in which all three Ce atoms share a common μ 3 -F unit. The Na 3 MCe 6 F 30 compounds are constructed of edge- and vertex-sharing cerium polyhedra connected to each other to form Ce 6 F 30 6− framework, which can accommodate only relatively smaller trivalent cations (M 3+ = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) as compared to uranium and thorium analogs. Magnetic susceptibility measurements were carried out on the samples of Cs 2 MCe 3 F 16 (M = Ni 2+ and Co 2+ ), which exhibit paramagnetic behavior.more » « less
-
Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations.more » « less
-
The results of the structural determination, magnetic characterization, and theoretical calculations of a new ruthenium-oxo complex, Li 4 [Ru 2 OCl 10 ]·10H 2 O, are presented. Single crystals were grown using solvent methods and the crystal structure was characterized by single crystal X-ray diffraction. Li 4 [Ru 2 OCl 10 ]·10H 2 O crystallizes into a low-symmetry triclinic structure ( P 1 ) due to the much smaller Li + cation compared to K + cation in the tetragonal complex K 4 [Ru 2 OCl 10 ]·H 2 O. The X-ray photoelectron spectra confirm only the single valent Ru 4+ in Li 4 [Ru 2 OCl 10 ]·10H 2 O even though two distinct Ru sites exist in the crystal structure. Magnetic measurements reveal the diamagnetic property of Li 4 [Ru 2 OCl 10 ]·10H 2 O with unpaired electrons existing on Ru 4+ . Furthermore, the molecular orbital analysis matches well with the observed UV and magnetic measurements.more » « less