Abstract In reduced-order modeling, complex systems that exhibit high state-space dimensionality are described and evolved using a small number of parameters. These parameters can be obtained in a data-driven way, where a high-dimensional dataset is projected onto a lower-dimensional basis. A complex system is then restricted to states on a low-dimensional manifold where it can be efficiently modeled. While this approach brings computational benefits, obtaining a good quality of the manifold topology becomes a crucial aspect when models, such as nonlinear regression, are built on top of the manifold. Here, we present a quantitative metric for characterizing manifold topologies. Our metric pays attention to non-uniqueness and spatial gradients in physical quantities of interest, and can be applied to manifolds of arbitrary dimensionality. Using the metric as a cost function in optimization algorithms, we show that optimized low-dimensional projections can be found. We delineate a few applications of the cost function to datasets representing argon plasma, reacting flows and atmospheric pollutant dispersion. We demonstrate how the cost function can assess various dimensionality reduction and manifold learning techniques as well as data preprocessing strategies in their capacity to yield quality low-dimensional projections. We show that improved manifold topologies can facilitate building nonlinear regression models.
more »
« less
Learning physics-based reduced-order models from data using nonlinear manifolds
We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the manifold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.
more »
« less
- Award ID(s):
- 1845076
- PAR ID:
- 10501700
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 34
- Issue:
- 3
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
State estimation is key to both analysing physical mechanisms and enabling real-time control of fluid flows. A common estimation approach is to relate sensor measurements to a reduced state governed by a reduced-order model (ROM). (When desired, the full state can be recovered via the ROM.) Current methods in this category nearly always use a linear model to relate the sensor data to the reduced state, which often leads to restrictions on sensor locations and has inherent limitations in representing the generally nonlinear relationship between the measurements and reduced state. We propose an alternative methodology whereby a neural network architecture is used to learn this nonlinear relationship. A neural network is a natural choice for this estimation problem, as a physical interpretation of the reduced state–sensor measurement relationship is rarely obvious. The proposed estimation framework is agnostic to the ROM employed, and can be incorporated into any choice of ROMs derived on a linear subspace (e.g. proper orthogonal decomposition) or a nonlinear manifold. The proposed approach is demonstrated on a two-dimensional model problem of separated flow around a flat plate, and is found to outperform common linear estimation alternatives.more » « less
-
We develop data-driven methods incorporating geometric and topological information to learn parsimonious representations of nonlinear dynamics from observations. The approaches learn nonlinear state-space models of the dynamics for general manifold latent spaces using training strategies related to Variational Autoencoders (VAEs). Our methods are referred to as Geometric Dynamic (GD) Variational Autoencoders (GD-VAEs). We learn encoders and decoders for the system states and evolution based on deep neural network architectures that include general Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and other architectures. Motivated by problems arising in parameterized PDEs and physics, we investigate the performance of our methods on tasks for learning reduced dimensional representations of the nonlinear Burgers Equations, Constrained Mechanical Systems, and spatial fields of Reaction-Diffusion Systems. GD-VAEs provide methods that can be used to obtain representations in manifold latent spaces for diverse learning tasks involving dynamics.more » « less
-
Abstract In this work, we consider the problem of learning a reduced-order model of a high-dimensional stochastic nonlinear system with control inputs from noisy data. In particular, we develop a hybrid parametric/nonparametric model that learns the “average” linear dynamics in the data using dynamic mode decomposition with control (DMDc) and the nonlinearities and model uncertainties using Gaussian process (GP) regression and compare it with total least-squares dynamic mode decomposition (tlsDMD), extended here to systems with control inputs (tlsDMDc). The proposed approach is also compared with existing methods, such as DMDc-only and GP-only models, in two tasks: controlling the stochastic nonlinear Stuart–Landau equation and predicting the flowfield induced by a jet-like body force field in a turbulent boundary layer using data from large-scale numerical simulations.more » « less
-
This article introduces an isometric manifold embedding data-driven paradigm designed to enable model-free simulations with noisy data sampled from a constitutive manifold. The proposed data-driven approach iterates between a global optimization problem that seeks admissible solutions for the balance principle and a local optimization problem that finds the closest point projection of the Euclidean space that isometrically embeds a nonlinear constitutive manifold. To de-noise the database, a geometric autoencoder is introduced such that the encoder first learns to create an approximated embedding that maps the underlying low-dimensional structure of the high-dimensional constitutive manifold onto a flattened manifold with less curvature. We then obtain the noise-free constitutive responses by projecting data onto a denoised latent space that is completely flat by assuming that the noise and the underlying constitutive signal are orthogonal to each other. Consequently, a projection from the conservative manifold onto this de-noised constitutive latent space enables us to complete the local optimization step of the data-driven paradigm. Finally, to decode the data expressed in the latent space without reintroducing noise, we impose a set of isometry constraints while training the autoencoder such that the nonlinear mapping from the latent space to the reconstructed constituent manifold is distance-preserving. Numerical examples are used to both validate the implementation and demonstrate the accuracy, robustness, and limitations of the proposed paradigm.more » « less
An official website of the United States government

