Background Vegetation fire may change Phosphorus (P) cycling in terrestrial ecosystems through converting biomass into fire residues. Aim The aim of this study was to understand the chemistry and mobility of P in fire residues to help reveal P thermochemistry during biomass burning and post-fire P cycling. Methods A combination of sequential extraction, liquid 31P NMR and P K-edge XANES was used to obtain quantitative P speciation and explain P solubilisation behaviours of charcoal. Key results Despite varying diverse P species existing in raw biomass, only two P structural moieties – orthophosphate and pyrophosphate – were identified in charcoal. However, relative abundance of pyrophosphate differs greatly among charcoal samples from different biomass types, ranging between 0 and 40% of total extractable P. Although P K-edge XANES data indicates abundant soluble phosphate minerals, most P (70–90%) is likely occluded physically in the charcoal. The bicarbonate-extractable P (the Olsen-P) varies significantly and cannot be explained by surface P concentration or elemental stoichiometry alone. Conclusion and implications The results suggest the importance of starting biomass P speciation (i.e. molecular structure and complexation environment) and thermal conditions in controlling P speciation and availability in charcoal. The different P chemistry between charcoal and ash suggests the importance of fire types and severity in disturbing the P cycle.
Monitoring conical intersection and aromaticity changes in photo-relaxation of cyclooctatetraene by TRUECARS and TRXD.
more » « less- Award ID(s):
- 2246379
- PAR ID:
- 10501709
- Publisher / Repository:
- Chemical Science
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 2971 to 2982
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phosphorus (P) is critical for crop production but has a high nutrient use inefficiency. Tomato was grown in soil amended with five P-sources, used as-is, or embedded within a biodegradable polymer, polyhydroxyalkanoate (PHA). Correlation analysis identified treatments that maintain plant growth, improve bioavailable soil P, and reduce P loss. Three performance classes were identified: (i) micro- and nanohydroxyapatite, which did not increase bioavailable P, plant P-uptake, or change P in runoff/leaching compared to controls; (ii) monocalcium phosphate (MCP), dicalcium phosphate (DCP), calcium pyrophosphate nanoparticles (CAP), and PHA-MCP that increased P-uptake and/or bioavailable P but also increased P loss in runoff/leaching; and (iii) PHA-DCP and PHA-CAP, where increased bioavailable P and plant P-uptake were achieved with minimal P loss in runoff/leaching. In addition to identifying treatments that maintain plant growth, increase bioavailable P, and minimize nutrient loss, correlation plots also revealed that (i) bioavailable P was a good indicator of plant P-uptake; (ii) leached P could be predicted from water solubility; and (iii) P loss through runoff versus leaching showed similar trends. This study highlights that biopolymers can promote plant P-uptake and improve bioavailable soil P, with implications for mitigating the negative environmental impacts of P loss from agricultural systems.more » « less
-
Applying molecular methods to fungi establishing lichenized associations with green algae or cyanobacteria has repeatedly revealed the existence of numerous phylogenetic taxa overlooked by classical taxonomic approaches. Here, we report taxonomical conclusions based on multiple species delimitation and validation analyses performed on an eight-locus dataset that includes world-wide representatives of the dolichorhizoid and scabrosoid clades in section Polydactylon of the genus Peltigera . Following the recommendations resulting from a consensus species delimitation approach and additional species validation analysis (BPP) performed in this study, we present a total of 25 species in the dolichorhizoid clade and nine in the scabrosoid clade, including respectively 18 and six species that are new to science and formally described. Additionally, one combination and three varieties (including two new to science) are proposed in the dolichorhizoid clade. The following 24 new species are described: P. appalachiensis , P. asiatica , P. borealis , P. borinquensis , P. chabanenkoae , P. clathrata , P. elixii , P. esslingeri , P. flabellae , P. gallowayi , P. hawaiiensis , P. holtanhartwigii , P. itatiaiae , P. hokkaidoensis , P. kukwae , P. massonii , P. mikado , P. nigriventris , P. orientalis , P. rangiferina , P. sipmanii , P. stanleyensis , P. vitikainenii and P. willdenowii ; the following new varieties are introduced: P. kukwae var. phyllidiata and P. truculenta var. austroscabrosa ; and the following new combination is introduced: P. hymenina var. dissecta . Each species from the dolichorhizoid and scabrosoid clades is morphologically and chemically described, illustrated, and characterised with ITS sequences. Identification keys are provided for the main biogeographic regions where species from the two clades occur. Morphological and chemical characters that are commonly used for species identification in the genus Peltigera cannot be applied to unambiguously recognise most molecularly circumscribed species, due to high variation of thalli formed by individuals within a fungal species, including the presence of distinct morphs in some cases, or low interspecific variation in others. The four commonly recognised morphospecies: P. dolichorhiza , P. neopolydactyla , P. pulverulenta and P. scabrosa in the dolichorhizoid and scabrosoid clades represent species complexes spread across multiple and often phylogenetically distantly related lineages. Geographic origin of specimens is often helpful for species recognition; however, ITS sequences are frequently required for a reliable identification.more » « less
-
Abstract Date Presented 04/21/2023
When working with autistic individuals, OTs need to incorporate interest-based activities in inclusive environments that promote protective factors and improve mental health and well-being.
Primary Author and Speaker: Joana Nana Serwaa Akrofi
Additional Authors and Speakers: Dora Onwumere
Contributing Authors: Kavitha Murthi, Kristie Patten, Ariana Riccio, Wendy Martin
-
Abstract Litter decomposition is a key ecological process that determines carbon (C) and nutrient cycling in terrestrial ecosystems. The initial concentrations of C and nutrients in litter play a critical role in this process, yet the global patterns of litter initial concentrations of C, nitrogen (N) and phosphorus (P) are poorly understood.
We employed machine learning with a global database to quantitatively assess the global patterns and drivers of leaf litter initial C, N and P concentrations, as well as their returning amounts (i.e. amounts returned to soils).
The medians of litter C, N and P concentrations were 46.7, 1.1, and 0.1%, respectively, and the medians of litter C, N and P returning amounts were 1.436, 0.038 and 0.004 Mg ha−1 year−1, respectively. Soil and climate emerged as the key predictors of leaf litter C, N and P concentrations. Predicted global maps showed that leaf litter N and P concentrations decreased with latitude, while C concentration exhibited an opposite pattern. Additionally, the returning amounts of leaf litter C, N and P all declined from the equator to the poles in both hemispheres.
Synthesis : Our results provide a quantitative assessment of the global concentrations and returning amounts of leaf litter C, N and P, which showed new light on the role of leaf litter in global C and nutrients cycling.