skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Quantum interferometry and pathway selectivity in the nonlinear response of photosynthetic excitons

We propose a time–frequency resolved spectroscopic technique which employs nonlinear interferometers to study exciton–exciton scattering in molecular aggregates. A higher degree of control over the contributing Liouville pathways is obtained as compared to classical light. We show how the nonlinear response can be isolated from the orders-of-magnitude stronger linear background by either phase matching or polarization filtering. Both arise due to averaging the signal over a large number of noninteracting, randomly oriented molecules. We apply our technique to the Frenkel exciton model which excludes charge separation for the photosystem II reaction center. We show how the sum of the entangled photon frequencies can be used to select two-exciton resonances, while their delay times reveal the single-exciton levels involved in the optical process.

 
more » « less
Award ID(s):
2246379
NSF-PAR ID:
10501716
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
30
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Strong optical nonlinearities play a central role in realizing quantum photonic technologies. Exciton-polaritons, which result from the hybridization of material excitations and cavity photons, are an attractive candidate to realize such nonlinearities. While the interaction between ground state excitons generates a notable optical nonlinearity, the strength of such interactions is generally not sufficient to reach the regime of quantum nonlinear optics. Excited states, however, feature enhanced interactions and therefore hold promise for accessing the quantum domain of single-photon nonlinearities. Here we demonstrate the formation of exciton-polaritons using excited excitonic states in monolayer tungsten diselenide (WSe 2 ) embedded in a microcavity. The realized excited-state polaritons exhibit an enhanced nonlinear response ∼ $${g}_{{pol}-{pol}}^{2s} \sim 46.4\pm 13.9\,\mu {eV}\mu {m}^{2}$$ g p o l − p o l 2 s ~ 46.4 ± 13.9 μ e V μ m 2 which is ∼4.6 times that for the ground-state exciton. The demonstration of enhanced nonlinear response from excited exciton-polaritons presents the potential of generating strong exciton-polariton interactions, a necessary building block for solid-state quantum photonic technologies. 
    more » « less
  2. Abstract

    The simplest picture of excitons in materials with atomic-like localization of electrons is that of Frenkel excitons, where electrons and holes stay close together, which is associated with a large binding energy. Here, using the example of the layered oxide V2O5, we show how localized charge-transfer excitations combine to form excitons that also have a huge binding energy but, at the same time, a large electron-hole distance, and we explain this seemingly contradictory finding. The anisotropy of the exciton delocalization is determined by the local anisotropy of the structure, whereas the exciton extends orthogonally to the chains formed by the crystal structure. Moreover, we show that the bright exciton goes together with a dark exciton of even larger binding energy and more pronounced anisotropy. These findings are obtained by combining first principles many-body perturbation theory calculations, ellipsometry experiments, and tight binding modelling, leading to very good agreement and a consistent picture. Our explanation is general and can be extended to other materials.

     
    more » « less
  3. Abstract

    In organic semiconductors, optical excitation does not necessarily produce free carriers. Very often, electron and hole are bound together to form an exciton. Releasing free carriers from the exciton is essential for the functioning of photovoltaics and optoelectronic devices, but it is a bottleneck process because of the high exciton binding energy. Inefficient exciton dissociation can limit the efficiency of organic photovoltaics. Here, nanoscale features that can allow the free carrier generation to occur spontaneously despite being an energy uphill process are determined. Specifically, by comparing the dissociation dynamics of the charge transfer (CT) exciton at two donor–acceptor interfaces, it is found that the relative orientation of the electron and hole wavefunction within a CT exciton plays an important role in determining whether the CT exciton will decompose into the higher energy free electron–hole pair or relax to the lower energy tightly‐bound CT exciton. The concept of the entropic driving force is combined with the structural anisotropy of typical organic crystals to devise a framework that can describe how the orientation of the delocalized electronic wavefunction can be manipulated to favor the energy‐uphill spontaneous dissociation of CT excitons over the energy‐downhill CT exciton cooling.

     
    more » « less
  4. Abstract Spectrally narrow optical resonances can be used to generate slow light, i.e., a large reduction in the group velocity. In a previous work, we developed hybrid 2D semiconductor plasmonic structures, which consist of propagating optical frequency surface-plasmon polaritons interacting with excitons in a semiconductor monolayer. Here, we use coupled exciton-surface plasmon polaritons (E-SPPs) in monolayer WSe 2 to demonstrate slow light with a 1300 fold decrease of the SPP group velocity. Specifically, we use a high resolution two-color laser technique where the nonlinear E-SPP response gives rise to ultra-narrow coherent population oscillation (CPO) resonances, resulting in a group velocity on order of 10 5  m/s. Our work paves the way toward on-chip actively switched delay lines and optical buffers that utilize 2D semiconductors as active elements. 
    more » « less
  5. Excitons are the neutral quasiparticles that form when Coulomb interactions create bound states between electrons and holes. Due to their bosonic nature, excitons are expected to condense and exhibit superfluidity at sufficiently low temperatures. In interacting Chern insulators, excitons may inherit the nontrivial topology and quantum geometry from the underlying electron wavefunctions. We theoretically investigate the excitonic bound states and superfluidity in flat-band insulators pumped with light. We find that the exciton wavefunctions exhibit vortex structures in momentum space, with the total vorticity being equal to the difference of Chern numbers between the conduction and valence bands. Moreover, both the exciton binding energy and the exciton superfluid density are proportional to the Brillouin-zone average of the quantum metric and the Coulomb potential energy per unit cell. Spontaneous emission of circularly polarized light from radiative decay is a detectable signature of the exciton vorticity. We propose that the vorticity can also be experimentally measured via the nonlinear anomalous Hall effect, whereas the exciton superfluidity can be detected by voltage-drop quantization through a combination of quantum geometry and Aharonov–Casher effect. Topological excitons and their superfluid phase could be realized in flat bands of twisted Van der Waals heterostructures.

     
    more » « less