skip to main content

This content will become publicly available on July 1, 2024

Title: In-the-Wild Affect Analysis of Children with ASD Using Heart Rate

Recognizing the affective state of children with autism spectrum disorder (ASD) in real-world settings poses challenges due to the varying head poses, illumination levels, occlusion and a lack of datasets annotated with emotions in in-the-wild scenarios. Understanding the emotional state of children with ASD is crucial for providing personalized interventions and support. Existing methods often rely on controlled lab environments, limiting their applicability to real-world scenarios. Hence, a framework that enables the recognition of affective states in children with ASD in uncontrolled settings is needed. This paper presents a framework for recognizing the affective state of children with ASD in an in-the-wild setting using heart rate (HR) information. More specifically, an algorithm is developed that can classify a participant’s emotion as positive, negative, or neutral by analyzing the heart rate signal acquired from a smartwatch. The heart rate data are obtained in real time using a smartwatch application while the child learns to code a robot and interacts with an avatar. The avatar assists the child in developing communication skills and programming the robot. In this paper, we also present a semi-automated annotation technique based on facial expression recognition for the heart rate data. The HR signal is analyzed to extract features that capture the emotional state of the child. Additionally, in this paper, the performance of a raw HR-signal-based emotion classification algorithm is compared with a classification approach based on features extracted from HR signals using discrete wavelet transform (DWT). The experimental results demonstrate that the proposed method achieves comparable performance to state-of-the-art HR-based emotion recognition techniques, despite being conducted in an uncontrolled setting rather than a controlled lab environment. The framework presented in this paper contributes to the real-world affect analysis of children with ASD using HR information. By enabling emotion recognition in uncontrolled settings, this approach has the potential to improve the monitoring and understanding of the emotional well-being of children with ASD in their daily lives.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Subject(s) / Keyword(s):
["Transformers","Biosensors","Multi-modal representation learning"]
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The authors present the design and implementation of an exploratory virtual learning environment that assists children with autism (ASD) in learning science, technology, engineering, and mathematics (STEM) skills along with improving social-emotional and communication skills. The primary contribution of this exploratory research is how educational research informs technological advances in triggering a virtual AI companion (AIC) for children in need of social-emotional and communication skills development. The AIC adapts to students’ varying levels of needed support. This project began by using puppetry control (human-in-the-loop) of the AIC, assisting students with ASD in learning basic coding, practicing their social skills with the AIC, and attaining emotional recognition and regulation skills for effective communication and learning. The student is given the challenge to program a robot, Dash™, to move in a square. Based on observed behaviors, the puppeteer controls the virtual agent’s actions to support the student in coding the robot. The virtual agent’s actions that inform the development of the AIC include speech, facial expressions, gestures, respiration, and heart color changes coded to indicate emotional state. The paper provides exploratory findings of the first 2 years of this 5-year scaling-up research study. The outcomes discussed align with a common approach of research design used for students with disabilities, called single case study research. This type of design does not involve random control trial research; instead, the student acts as her or his own control subject. Students with ASD have substantial individual differences in their social skill deficits, behaviors, communications, and learning needs, which vary greatly from the norm and from other individuals identified with this disability. Therefore, findings are reported as changes within subjects instead of across subjects. While these exploratory observations serve as a basis for longer term research on a larger population, this paper focuses less on student learning and more on evolving technology in AIC and supporting students with ASD in STEM environments. 
    more » « less
  2. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham., P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208.

    more » « less
  3. Abstract

    Interoception, often defined as the perception of internal physiological changes, is implicated in many adult social affective processes, but its effects remain understudied in the context of parental socialization of children's emotions. We hypothesized that what parents know about the interoceptive concomitants of emotions, orinteroceptive knowledge(e.g., “my heart races when excited”), may be especially relevant in emotion socialization and in supporting children's working models of emotions and the social world. We developed a measure of mothers' interoceptive knowledge about their own emotions and examined its relation to children's social affective outcomes relative to other socialization factors, including self‐reported parental behaviors, emotion beliefs, and knowledge of emotion‐relevant situations and non‐verbal expressions. To assess these, mothers (N = 201) completed structured interviews and questionnaires. A few months later, third‐grade teachers rated children's social skills and emotion regulation observed in the classroom. Results indicated that mothers' interoceptive knowledge about their own emotions was associated with children's social affective skills (emotion regulation, social initiative, cooperation, self‐control), even after controlling for child gender and ethnicity, family income, maternal stress, and the above maternal socialization factors. Overall, findings suggest that mothers' interoceptive knowledge may provide an additional, unique pathway by which children acquire social affective competence.

    more » « less
  4. This work describes the design of real-time dance-based interaction with a humanoid robot, where the robot seeks to promote physical activity in children by taking on multiple roles as a dance partner. It acts as a leader by initiating dances but can also act as a follower by mimicking a child’s dance movements. Dances in the leader role are produced by a sequence-to-sequence (S2S) Long Short-Term Memory (LSTM) network trained on children’s music videos taken from YouTube. On the other hand, a music orchestration platform is implemented to generate background music in the follower mode as the robot mimics the child’s poses. In doing so, we also incorporated the largely unexplored paradigm of learning-by-teaching by including multiple robot roles that allow the child to both learn from and teach to the robot. Our work is among the first to implement a largely autonomous, real-time full-body dance interaction with a bipedal humanoid robot that also explores the impact of the robot roles on child engagement. Importantly, we also incorporated in our design formal constructs taken from autism therapy, such as the least-to-most prompting hierarchy, reinforcements for positive behaviors, and a time delay to make behavioral observations. We implemented a multimodal child engagement model that encompasses both affective engagement (displayed through eye gaze focus and facial expressions) as well as task engagement (determined by the level of physical activity) to determine child engagement states. We then conducted a virtual exploratory user study to evaluate the impact of mixed robot roles on user engagement and found no statistically significant difference in the children’s engagement in single-role and multiple-role interactions. While the children were observed to respond positively to both robot behaviors, they preferred the music-driven leader role over the movement-driven follower role, a result that can partly be attributed to the virtual nature of the study. Our findings support the utility of such a platform in practicing physical activity but indicate that further research is necessary to fully explore the impact of each robot role. 
    more » « less
  5. Speech and language development are early indicators of overall analytical and learning ability in children. The preschool classroom is a rich language environment for monitoring and ensuring growth in young children by measuring their vocal interactions with both teachers and classmates. Early childhood researchers recognize the importance in analyzing naturalistic vs. controlled lab recordings to measure both quality and quantity of child interactions. Recently, large language model-based speech technologies have performed well on conversational speech recognition. In this regard, we assess performance of such models on the wide dynamic scenario of early childhood classroom settings. This study investigates an alternate Deep Learning-based Teacher-Student learning solution for recognizing adult speech within preschool interactions. Our proposed adapted model achieves the best F1-score for recognizing most frequent 400 words on test sets for both classrooms. Additionally, F1-scores for alternate word groups provides a breakdown of performance across relevant language-based word-categories. The study demonstrates the prospects of addressing educational assessment needs through communication audio stream analysis, while maintaining both security and privacy of all children and adults. The resulting child communication metrics from this study can also be used for broad-based feedback for teachers. 
    more » « less