skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparative Analysis of Emotion-Detecting AI Systems with Respect to Algorithm Performance and Dataset Diversity
In recent news, organizations have been considering the use of facial and emotion recognition for applications involving youth such as tackling surveillance and security in schools. However, the majority of efforts on facial emotion recognition research have focused on adults. Children, particularly in their early years, have been shown to express emotions quite differently than adults. Thus, before such algorithms are deployed in environments that impact the wellbeing and circumstance of youth, a careful examination should be made on their accuracy with respect to appropriateness for this target demographic. In this work, we utilize several datasets that contain facial expressions of children linked to their emotional state to evaluate eight different commercial emotion classification systems. We compare the ground truth labels provided by the respective datasets to the labels given with the highest confidence by the classification systems and assess the results in terms of matching score (TPR), positive predictive value, and failure to compute rate. Overall results show that the emotion recognition systems displayed subpar performance on the datasets of children's expressions compared to prior work with adult datasets and initial human ratings. We then identify limitations associated with automated recognition of emotions in children and provide suggestions on directions with enhancing recognition accuracy through data diversification, dataset accountability, and algorithmic regulation.  more » « less
Award ID(s):
1849101
PAR ID:
10109151
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society
Page Range / eLocation ID:
377 to 382
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. People can visualize their spontaneous and voluntary emotions via facial expressions, which play a critical role in social interactions. However, less is known about mechanisms of spontaneous emotion expressions, especially in adults with visual impairment and blindness. Nineteen adults with visual impairment and blindness participated in interviews where the spontaneous facial expressions were observed and analyzed via the Facial Action Coding System (FACS). We found a set of Action Units, primarily engaged in expressing the spontaneous emotions, which were likely to be affected by participants’ different characteristics. The results of this study could serve as evidence to suggest that adults with visual impairment and blindness show individual differences in spontaneous facial expressions of emotions. 
    more » « less
  2. We present a System for Processing In-situ Bio-signal Data for Emotion Recognition and Sensing (SPIDERS)- a low-cost, wireless, glasses-based platform for continuous in-situ monitoring of user's facial expressions (apparent emotions) and real emotions. We present algorithms to provide four core functions (eye shape and eyebrow movements, pupillometry, zygomaticus muscle movements, and head movements), using the bio-signals acquired from three non-contact sensors (IR camera, proximity sensor, IMU). SPIDERS distinguishes between different classes of apparent and real emotion states based on the aforementioned four bio-signals. We prototype advanced functionalities including facial expression detection and real emotion classification with a landmarks and optical flow based facial expression detector that leverages changes in a user's eyebrows and eye shapes to achieve up to 83.87% accuracy, as well as a pupillometry-based real emotion classifier with higher accuracy than other low-cost wearable platforms that use sensors requiring skin contact. SPIDERS costs less than $20 to assemble and can continuously run for up to 9 hours before recharging. We demonstrate that SPIDERS is a truly wireless and portable platform that has the capability to impact a wide range of applications, where knowledge of the user's emotional state is critical. 
    more » « less
  3. Many people including those with visual impairment and blindness take advantage of video conferencing tools to meet people. Video conferencing tools enable them to share facial expressions that are considered as one of the most important aspects of human communication. This study aims to advance knowledge of how those with visual impairment and blindness share their facial expressions of emotions virtually. This study invited a convenience sample of 28 adults with visual impairment and blindness to Zoom video conferencing. The participants were instructed to pose facial expressions of basic human emotions (anger, fear, disgust, happiness, surprise, neutrality, calmness, and sadness), which were video recorded. The facial expressions were analyzed using the Facial Action Coding System (FACS) that encodes the movement of specific facial muscles called Action Units (AUs). This study found that there was a particular set of AUs significantly engaged in expressing each emotion, except for sadness. Individual differences were also found in AUs influenced by the participants’ visual acuity levels and emotional characteristics such as valence and arousal levels. The research findings are anticipated to serve as the foundation of knowledge, contributing to developing emotion-sensing technologies for those with visual impairment and blindness. 
    more » « less
  4. In this study, we investigate how different types of masks affect automatic emotion classification in different channels of audio, visual, and multimodal. We train emotion classification models for each modality with the original data without mask and the re-generated data with mask respectively, and investigate how muffled speech and occluded facial expressions change the prediction of emotions. Moreover, we conduct the contribution analysis to study how muffled speech and occluded face interplay with each other and further investigate the individual contribution of audio, visual, and audio-visual modalities to the prediction of emotion with and without mask. Finally, we investigate the cross-corpus emotion recognition across clear speech and re-generated speech with different types of masks, and discuss the robustness of speech emotion recognition. 
    more » « less
  5. Recognizing the affective state of children with autism spectrum disorder (ASD) in real-world settings poses challenges due to the varying head poses, illumination levels, occlusion and a lack of datasets annotated with emotions in in-the-wild scenarios. Understanding the emotional state of children with ASD is crucial for providing personalized interventions and support. Existing methods often rely on controlled lab environments, limiting their applicability to real-world scenarios. Hence, a framework that enables the recognition of affective states in children with ASD in uncontrolled settings is needed. This paper presents a framework for recognizing the affective state of children with ASD in an in-the-wild setting using heart rate (HR) information. More specifically, an algorithm is developed that can classify a participant’s emotion as positive, negative, or neutral by analyzing the heart rate signal acquired from a smartwatch. The heart rate data are obtained in real time using a smartwatch application while the child learns to code a robot and interacts with an avatar. The avatar assists the child in developing communication skills and programming the robot. In this paper, we also present a semi-automated annotation technique based on facial expression recognition for the heart rate data. The HR signal is analyzed to extract features that capture the emotional state of the child. Additionally, in this paper, the performance of a raw HR-signal-based emotion classification algorithm is compared with a classification approach based on features extracted from HR signals using discrete wavelet transform (DWT). The experimental results demonstrate that the proposed method achieves comparable performance to state-of-the-art HR-based emotion recognition techniques, despite being conducted in an uncontrolled setting rather than a controlled lab environment. The framework presented in this paper contributes to the real-world affect analysis of children with ASD using HR information. By enabling emotion recognition in uncontrolled settings, this approach has the potential to improve the monitoring and understanding of the emotional well-being of children with ASD in their daily lives. 
    more » « less