skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compatible ideals in ℚ-Gorenstein rings
Suppose R R is a F F -finite and F F -pure Q \mathbb {Q} -Gorenstein local ring of prime characteristic p > 0 p>0 . We show that an ideal I ⊆<#comment/> R I\subseteq R is uniformly compatible ideal (with all p −<#comment/> e p^{-e} -linear maps) if and only if exists a module finite ring map R →<#comment/> S R\to S such that the ideal I I is the sum of images of all R R -linear maps S →<#comment/> R S\to R . In other words, the set of uniformly compatible ideals is exactly the set of trace ideals of finite ring maps.  more » « less
Award ID(s):
2101890 2101800 1952522
PAR ID:
10501872
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
151
Issue:
772
ISSN:
0002-9939
Page Range / eLocation ID:
4099 to 4112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this article we study base change of Poincaré series along a quasi-complete intersection homomorphism φ<#comment/> :<#comment/> Q →<#comment/> R \varphi \colon Q \to R , where Q Q is a local ring with maximal ideal m \mathfrak {m} . In particular, we give a precise relationship between the Poincaré series P M Q ( t ) \mathrm {P}^Q_M(t) of a finitely generated R R -module M M to P M R ( t ) \mathrm {P}^R_M(t) when the kernel of φ<#comment/> \varphi is contained in m a n n Q ( M ) \mathfrak {m}\,\mathrm {ann}_Q(M) . This generalizes a classical result of Shamash for complete intersection homomorphisms. Our proof goes through base change formulas for Poincaré series under the map of dg algebras Q →<#comment/> E Q\to E , with E E the Koszul complex on a minimal set of generators for the kernel of φ<#comment/> \varphi
    more » « less
  2. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
  3. Let R R be a standard graded algebra over a field. We investigate how the singularities of Spec ⁡<#comment/> R \operatorname {Spec} R or Proj ⁡<#comment/> R \operatorname {Proj} R affect the h h -vector of R R , which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R R satisfies Serre’s condition ( S r ) (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F F -pure), then h 0 h_0 , …, h r ≥<#comment/> 0 h_r\geq 0 . Furthermore the multiplicity of R R is at least h 0 + h 1 + ⋯<#comment/> + h r −<#comment/> 1 h_0+h_1+\dots +h_{r-1} . We also prove that equality in many cases forces R R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain Ext \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F F -pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others. 
    more » « less
  4. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less
  5. Let K / Q p K/\mathbb {Q}_p be a finite unramified extension, ρ<#comment/> ¯<#comment/> : G a l ( Q ¯<#comment/> p / K ) →<#comment/> G L n ( F ¯<#comment/> p ) \overline {\rho }:\mathrm {Gal}(\overline {\mathbb {Q}}_p/K)\rightarrow \mathrm {GL}_n(\overline {\mathbb {F}}_p) a continuous representation, and τ<#comment/> \tau a tame inertial type of dimension n n . We explicitly determine, under mild regularity conditions on τ<#comment/> \tau , the potentially crystalline deformation ring R ρ<#comment/> ¯<#comment/> η<#comment/> , τ<#comment/> R^{\eta ,\tau }_{\overline {\rho }} in parallel Hodge–Tate weights η<#comment/> = ( n −<#comment/> 1 , ⋯<#comment/> , 1 , 0 ) \eta =(n-1,\cdots ,1,0) and inertial type τ<#comment/> \tau when theshapeof ρ<#comment/> ¯<#comment/> \overline {\rho } with respect to τ<#comment/> \tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150]. 
    more » « less