Abstract Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.
more »
« less
Field Guide to Traction Force Microscopy
Abstract IntroductionTraction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. MethodsTherefore, we present this “Field Guide” with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. ResultsWe cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. ConclusionsBy presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence.
more »
« less
- PAR ID:
- 10501993
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Cellular and Molecular Bioengineering
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1865-5025
- Format(s):
- Medium: X Size: p. 87-106
- Size(s):
- p. 87-106
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability of cells to maintain a constant level of cytoskeletal tension in response to external and internal disturbances is referred to as tensional homeostasis. It is essential for the normal physiological function of cells and tissues, and for protection against disease progression, including atherosclerosis and cancer. In previous studies, we defined tensional homeostasis as the ability of cells to maintain a consistent level of cytoskeletal tension with low temporal fluctuations. In those studies, we measured temporal fluctuations of cell-substrate traction forces in clusters of endothelial cells and of fibroblasts. We observed those temporal fluctuations to decrease with increasing cluster size in endothelial cells, but not in fibroblasts. We quantified temporal fluctuation, and thus homeostasis, through the coefficient of variation (CV) of the traction field; the lower the value of CV, the closer the cell is to the state of tensional homeostasis. This metric depends on correlation between individual traction forces. In this study, we analyzed the contribution of correlation between traction forces on traction field CV in clusters of endothelial cells and fibroblasts using experimental data that we had obtained previously. Results of our analysis showed that positive correlation between traction forces was detrimental to homeostasis, and that it was cell type-dependent.more » « less
-
Abstract BackgroundEpigenomic profiling assays such as ChIP-seq have been widely used to map the genome-wide enrichment profiles of chromatin-associated proteins and posttranslational histone modifications. Sequencing depth is a key parameter in experimental design and quality control. However, due to variable sequencing depth requirements across experimental conditions, it can be challenging to determine optimal sequencing depth, particularly for projects involving multiple targets or cell types. ResultsWe developed thepeaksatR package to provide target read depth estimates for epigenomic experiments based on the analysis of peak saturation curves. We appliedpeaksatto establish the distinctive read depth requirements for ChIP-seq studies of histone modifications in different cell lines. Usingpeaksat,we were able to estimate the target read depth required per library to obtain high-quality peak calls for downstream analysis. In addition,peaksatwas applied to other sequence-enrichment methods including CUT&RUN and ATAC-seq. Conclusionpeaksataddresses a need for researchers to make informed decisions about whether their sequencing data has been generated to an adequate depth and subsequently sufficient meaningful peaks, and failing that, how many more reads would be required per library.peaksatis applicable to other sequence-based methods that include calling peaks in their analysis.more » « less
-
Abstract MotivationSingle-cell RNA sequencing (scRNA-seq) has revolutionized biological sciences by revealing genome-wide gene expression levels within individual cells. However, a critical challenge faced by researchers is how to optimize the choices of sequencing platforms, sequencing depths and cell numbers in designing scRNA-seq experiments, so as to balance the exploration of the depth and breadth of transcriptome information. ResultsHere we present a flexible and robust simulator, scDesign, the first statistical framework for researchers to quantitatively assess practical scRNA-seq experimental design in the context of differential gene expression analysis. In addition to experimental design, scDesign also assists computational method development by generating high-quality synthetic scRNA-seq datasets under customized experimental settings. In an evaluation based on 17 cell types and 6 different protocols, scDesign outperformed four state-of-the-art scRNA-seq simulation methods and led to rational experimental design. In addition, scDesign demonstrates reproducibility across biological replicates and independent studies. We also discuss the performance of multiple differential expression and dimension reduction methods based on the protocol-dependent scRNA-seq data generated by scDesign. scDesign is expected to be an effective bioinformatic tool that assists rational scRNA-seq experimental design and comparison of scRNA–seq computational methods based on specific research goals. Availability and implementationWe have implemented our method in the R package scDesign, which is freely available at https://github.com/Vivianstats/scDesign. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
IntroductionThere is a critical need to develop innovative educational strategies that engage youth in meaningful mathematics learning, particularly students from groups that have been historically marginalized in science, technology, engineering, and mathematics (STEM). In this study, we explore youths’ participation in two collaborative projects from the Growing Mathletes curriculum which combines baseball contexts and mathematics. Our goal was to understand the potential of these projects to support youths’ engagement with mathematical ideas and practices, and the extent to which youth leveraged a range of resources, including prior experiences and funds of knowledge, to inform their decisions and understanding. MethodsThe Design a Stadium and Baseball Team Roster projects were implemented in two afterschool setting sites and two summer program sites with 102 youth of all genders in grades 3 to 8. Data sources included video recordings of youth participation in the project, project artifacts, and youth interviews. ResultsWe found the projects contained specific features that supported youths’ engagement in three specific mathematical practices: (1) make sense of problems and persevere in solving them, (2) reason abstractly and quantitatively, and (3) construct viable arguments and critique the reasoning of others. Additionally, there is evidence that while engaging in these projects youth drew on their own funds of knowledge to inform their decisions and understanding. ConclusionOur findings point to key implications for researchers, educators, and curriculum developers in informal STEM learning spaces.more » « less
An official website of the United States government
