skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 21, 2025

Title: Connecting mathematics and sports in informal learning spaces
IntroductionThere is a critical need to develop innovative educational strategies that engage youth in meaningful mathematics learning, particularly students from groups that have been historically marginalized in science, technology, engineering, and mathematics (STEM). In this study, we explore youths’ participation in two collaborative projects from the Growing Mathletes curriculum which combines baseball contexts and mathematics. Our goal was to understand the potential of these projects to support youths’ engagement with mathematical ideas and practices, and the extent to which youth leveraged a range of resources, including prior experiences and funds of knowledge, to inform their decisions and understanding. MethodsThe Design a Stadium and Baseball Team Roster projects were implemented in two afterschool setting sites and two summer program sites with 102 youth of all genders in grades 3 to 8. Data sources included video recordings of youth participation in the project, project artifacts, and youth interviews. ResultsWe found the projects contained specific features that supported youths’ engagement in three specific mathematical practices: (1) make sense of problems and persevere in solving them, (2) reason abstractly and quantitatively, and (3) construct viable arguments and critique the reasoning of others. Additionally, there is evidence that while engaging in these projects youth drew on their own funds of knowledge to inform their decisions and understanding. ConclusionOur findings point to key implications for researchers, educators, and curriculum developers in informal STEM learning spaces.  more » « less
Award ID(s):
2005793
PAR ID:
10535055
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers in Education
Date Published:
Journal Name:
Frontiers in Education
Volume:
9
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An extensive number of empirical research studies support the engagement of young children and youth in out-of-school science, technology, engineering, and/or mathematics learning experiences. In this case study, we add to this knowledge base through examining how rural middle school learners engage with science and math concepts and practices through an afterschool program that emphasized the development of STEM content, skills, and practices using the field of archaeology, as well as Indigenous knowledges, as mediums. Results highlighted how various syncretic approaches within the afterschool program afforded 61 middle school aged learners’ opportunities to engage with math and science concepts common to archaeologists and Indigenous peoples. We illustrate this through five “doings.” For example, learners engaged in similar science practices to Indigenous peoples through considering how local landscapes and the natural environment informed decisions regarding settlements. This study concludes with recommendations for professional archaeologists and educators to adapt and/or develop a similar afterschool program to support students’ participation as ARCH + STEM learners. 
    more » « less
  2. Youth-focused community and citizen science (CCS) is increasingly used to promote science learning and to increase the accessibility of the tools of scientific research among historically marginalized and underserved communities. CCS projects are frequently categorized according to their level of public participation and their distribution of power between professional scientists and participants from collaborative and co-created projects to projects where participants have limited roles within the science process. In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants. We administered surveys and conducted post-program interviews with youth participation in two different CCS projects in Alaska, the Winterberry Project and Fresh Eyes on Ice, each with a contributory and a co-created model. We found that youth participating in co-created CCS projects reflected more often on their science self-efficacy than did youth in contributory projects. The CCS program model did not influence youths’ science interest, which grew after participating in both contributory and co-created projects. Our findings suggest that when youth have more power and agency to make decisions in the science process, as in co-created projects, they have greater confidence in their abilities to conduct science. Further, participating in CCS projects excites and engages youth in science learning, regardless of the CCS program design. 
    more » « less
  3. Non-technical summaryImproving the flow of information between governments and local communities is paramount to achieving effective climate change mitigation and adaptation. We propose five pathways to deepen participation and improve community-based climate action. The pathways can be summarized as visualization, simulations to practice decision-making, participatory budgeting and planning, environmental civic service, and education and curriculum development. These pathways contribute to improving governance by consolidating in governments the practice of soliciting and incorporating community participation while simultaneously giving communities the tools and knowledge needed to become active contributors to climate change adaptation and mitigation measures. Technical summaryCommunity participation is considered a key component in the design of responses to climate change. Substantial engagement of local communities is required to ensure information flow between governments and communities, but also because local communities are the primary sites of adaptation action. However, frontline communities are often excluded from decision-making and implementation processes due to political choices or failures to identify ways to make participatory frameworks more inclusive. Climate action requires the active engagement of communities in making consequential decisions, or what we termdeepened participation. We propose five pathways to deepen participation: visualization, simulations to practice decision-making, participatory budgeting and planning, environmental civic service, and education and curriculum development. The five pathways identify strategies that can be incorporated into existing organizational and institutional frameworks or used to create new ones. Shortcomings related to each strategy are identified. Reflection by communities and governments is encouraged as they choose which participatory technique(s) to adopt. Social media summaryClimate action requires the active engagement of communities. Learn five pathways to get started deepening participation. 
    more » « less
  4. Background:The Glycemia Risk Index (GRI) was developed in adults with diabetes and is a validated metric of quality of glycemia. Little is known about the relationship between GRI and type 1 diabetes (T1D) self-management habits, a validated assessment of youths’ engagement in habits associated with glycemic outcomes. Method:We retrospectively examined the relationship between GRI and T1D self-management habits in youth with T1D who received care from a Midwest pediatric diabetes clinic network. The GRI was calculated using seven days of continuous glucose monitor (CGM) data, and T1D self-management habits were assessed ±seven days from the GRI score. A mixed-effects Poisson regression model was used to evaluate the total number of habits youth engaged in with GRI, glycated hemoglobin A1c (HbA1c), age, race, ethnicity, and insurance type as fixed effects and participant ID as a random effect to account for multiple clinic visits per individual. Results:The cohort included 1182 youth aged 2.5 to 18.0 years (mean = 13.8, SD = 3.5) comprising 50.8% male, 84.6% non-Hispanic White, and 64.8% commercial insurance users across a total of 6029 clinic visits. Glycemia Risk Index scores decreased as total number of habits performed increased, suggesting youth who performed more self-management habits achieved a higher quality of glycemia. Conclusions:In youth using CGMs, GRI may serve as an easily obtainable metric to help identify youth with above target glycemia, and engagement/disengagement in the T1D self-management habits may inform clinicians with suitable interventions for improving glycemic outcomes. 
    more » « less
  5. Background This comparative case study examined the use of math walks with middle grade youths and adult facilitators in an informal STEM learning space. Math walks are place-based walking tours where youths and facilitators critically examine and ask math-related questions about their environment. Method Drawing on situated theories of learning and frameworks for understanding group participation, we examined how facilitators constrained or supported youths’ mathematical thinking as they participated in math walks at the local zoo. Results Using interaction and stance analysis, we identified, analyzed, and compared three contrasting cases: In the first case, the facilitator may have overly constrained youths’ mathematical thinking by asking leading questions and not providing time for youths to discuss their personal interests. In the second case, the facilitator may have underly constrained youths’ mathematical thinking by allowing youths to ask too many new questions without refining or developing any one specific question. In the third case, the facilitator supported mathematical thinking by praising youths’ work, layering on mathematical terminology, and providing clear and actionable instructions for how youths could refine their mathematical questions. Conclusions Findings support efforts to understand how adult facilitators can support youths in seeing mathematics within and asking mathematical questions about the world around them. 
    more » « less