Microcapsules allow for the controlled containment, transport, and release of cargoes ranging from pharmaceuticals to fragrances. Given the interest from a variety of industries in microcapsules and other core–shell structures, a multitude of fabrication strategies exist. Here, we report on a method relying on a mixture of temperature-responsive microgel particles, poly( N -isopropylacrylamide) (pNIPAM), and a polymer which undergo fluid–fluid phase separation. At room temperature this mixture separates into colloid-rich (liquid) and colloid-poor (gas) fluids. By heating the sample above a critical temperature where the microgel particles shrink dramatically and develop a more deeply attractive interparticle potential, the droplets of the colloid-rich phase become gel-like. As the temperature is lowered back to room temperature, these droplets of gelled colloidal particles reliquefy and phase separation within the droplet occurs. This phase separation leads to colloid-poor droplets within the colloid-rich droplets surrounded by a continuous colloid-poor phase. The gas/liquid/gas all-aqueous double emulsion lasts only a few minutes before a majority of the inner droplets escape. However, the colloid-rich shell of the core–shell droplets can solidify with the addition of salt. That this method creates core–shell structures with a shell composed of stimuli-sensitive microgel colloidal particles using only aqueous components makes it attractive for encapsulating biological materials and making capsules that respond to changes in, for example, temperature, salt concentration, or pH.
more »
« less
Designing negative feedback loops in enzymatic coacervate droplets
Membraneless organelles within the living cell use phase separation of biomolecules coupled with enzymatic reactions to regulate cellular processes. The diverse functions of these biomolecular condensates motivate the pursuit of simpler in vitro models that exhibit primitive forms of self-regulation based on internal feedback mechanisms. Here, we investigate one such model based on complex coacervation of the enzyme catalase with an oppositely charge polyelectrolyte DEAE-dextran to form pH-responsive catalytic droplets. Upon addition of hydrogen peroxide “fuel”, enzyme activity localized within the droplets causes a rapid increase in the pH. Under appropriate conditions, this reaction-induced pH change triggers coacervate dissolution owing to its pH-responsive phase behavior. Notably, this destabilizing effect of the enzymatic reaction on phase separation depends on droplet size owing to the diffusive delivery and removal of reaction components. Reaction-diffusion models informed by the experimental data show that larger drops support larger changes in the local pH thereby enhancing their dissolution relative to smaller droplets. Together, these results provide a basis for achieving droplet size control based on negative feedback between pH-dependent phase separation and pH-changing enzymatic reactions.
more »
« less
- Award ID(s):
- 1938303
- PAR ID:
- 10502008
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 14
- Issue:
- 18
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 4735 to 4744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.more » « less
-
null (Ed.)Although the utilization of rigid particles can afford stable emulsions, some applications require eventual emulsion destabilization to release contents captured in the particle-covered droplet. This destabilizing effect is achieved when using stabilizers that respond to controlled changes in environment. Microgels can be synthesized as stimuli responsive polymeric gel networks that adsorb to oil/water interfaces and stabilize emulsions. These particles are commonly hydrogels that swell and collapse in water in response to environmental changes. However, amphiphilic functionality is desired to enhance the adsorption abilities of these hydrogels while maintaining their stimuli responsivity. Microfluidic techniques are used to synthesize Janus microgels with two opposing stimuli responsive hemispheres. The particles have a temperature responsive domain connected to a pH responsive network where each side changes its hydrophilicity in response to a change in temperature or pH, respectively. The Janus microgels are amphiphilic in acidic conditions at 19 °C and alkaline conditions at 40 °C, while the opposite conditions cause a reduction of the amphiphilicity. By stabilizing emulsions with these dual responsive microgels, “smart” droplets that respond to environmental cues are formed. Emulsion droplets remain stable with smaller diameters when aqueous solution conditions favor amphiphilic particles yet, coalesce to larger droplets upon changing pH or temperature. These responsive Janus microgels represent the advancing technology of responsive droplets and demonstrate the applicability of microgels as emulsion stabilizers.more » « less
-
Coupling between chemical fuel consumption and phase separation can lead to condensation at a nonequilibrium steady state, resulting in phase behaviors that are not described by equilibrium thermodynamics. Theoretical models of such “chemically driven fluids” typically invoke near-equilibrium approximations at small length scales. However, because dissipation occurs due to both molecular-scale chemical reactions and mesoscale diffusive transport, it has remained unclear which properties of phase-separated reaction–diffusion systems can be assumed to be at an effective equilibrium. Here, we use microscopic simulations to show that mesoscopic fluxes are dependent on nonequilibrium fluctuations at phase-separated interfaces. We further develop a first-principles theory to predict nonequilibrium coexistence curves, localization of mesoscopic fluxes near phase-separated interfaces, and droplet size-scaling relations in good agreement with simulations. Our findings highlight the central role of interfacial properties in governing nonequilibrium condensation and have broad implications for droplet nucleation, coarsening, and size control in chemically driven fluids.more » « less
-
Chemically driven fluids can demix to form condensed droplets that exhibit phase behaviors not observed at equilibrium. In particular, nonequilibrium interfacial properties can emerge when the chemical reactions are driven differentially between the interior and exterior of the phase-separated droplets. Here, we use a minimal model to study changes in the interfacial tension between coexisting phases away from equilibrium. Simulations of both droplet nucleation and interface roughness indicate that the nonequilibrium interfacial tension can either be increased or decreased relative to its equilibrium value, depending on whether the driven chemical reactions are accelerated or decelerated within the droplets. Finally, we show that these observations can be understood using a predictive theory based on an effective thermodynamic equilibrium.more » « less
An official website of the United States government

