Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.
more »
« less
Warmer springs increase potential for temporal reproductive isolation among habitat patches in subalpine flowering plants
Abstract Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations.Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m.Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.Synthesis. By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes.
more »
« less
- Award ID(s):
- 2016749
- PAR ID:
- 10502075
- Publisher / Repository:
- British Ecological Society
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 111
- Issue:
- 10
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- 2257 to 2268
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Habitat loss is a major threat to biodiversity, but the effects of habitat fragmentation are less clear. Examining drivers of key demographic processes, such as reproduction, will clarify species‐level responses to fragmentation and broader effects on biodiversity. Yet, understanding how fragmentation affects demography has been challenging due to the many ways landscapes are altered by co‐occurring habitat loss and fragmentation, coupled with the rarity of experiments to disentangle these effects.In a large, replicated fragmentation experiment with open savanna habitats surrounded by pine plantation forests, we tested the effects of inter‐patch connectivity, patch edge‐to‐area ratio, and within‐patch distance from an edge on plant reproductive output. Using five experimentally planted species of restoration interest—three wind‐pollinated grass species and two insect‐pollinated forb species—we measured plant flowering, pollination rate, and seed production.All plant species were more likely to flower and produce more flowering structures farther from the forest edge. Connectivity and distance from an edge, however, had no effect on the pollination rate (regardless of pollination mode). Despite no influence of fragmentation on pollination, plant seed production increased farther from the edge for four of five species, driven by the increase in flower production.Synthesis. Altogether, we demonstrate that plant reproductive output (seed production) is decreased by habitat fragmentation through edge effects on flowering. Our work provides evidence that an important contributor to plant demography, reproductive output, is altered by edge effects in fragmented patches. These species‐level impacts of fragmentation may provide insight into the mechanisms of fragmentation effects on community‐level changes in biodiversity.more » « less
-
Nectar contains antimicrobial constituents including hydrogen peroxide, yet it is unclear how widespread nectar hydrogen peroxide might be among plant species or how effective it is against common nectar microbes.Here, we surveyed 45 flowering plant species across 23 families and reviewed the literature to assess the field‐realistic range of nectar hydrogen peroxide (Aim 1). We experimentally explored whether plant defense hormones increase nectar hydrogen peroxide (Aim 2). Further, we tested the hypotheses that variation in microbial tolerance to peroxide is predicted by the microbe isolation environment (Aim 3); increasing hydrogen peroxide in flowers alters microbial abundance and community assembly (Aim 4), and that the microbial community context affects microbial tolerance to peroxide (Aim 5).Peroxide in sampled plants ranged from undetectable toc3000 μM, with 50% of species containing less than 100 μM. Plant defensive hormones did not affect hydrogen peroxide in floral nectar, but enzymatically upregulated hydrogen peroxide significantly reduced microbial growth.Together, our results suggest that nectar peroxide is a common but not pervasive antimicrobial defense among nectar‐producing plants. Microbes vary in tolerance and detoxification ability, and co‐growth can facilitate the survival and growth of less tolerant species, suggesting a key role for community dynamics in the microbial colonization of nectar.more » « less
-
Abstract The temporal stability of plant productivity affects species' access to resources, exposure to stressors and strength of interactions with other species in the community, including support to the food web. The magnitude of temporal stability depends on how a species allocates resources among tissues and across phenological stages, such as vegetative growth versus reproduction. Understanding how plant phenological traits correlate with the long‐term stability of plant biomass is particularly important in highly variable ecosystems, such as drylands.We evaluated whether phenological traits predict the temporal stability of plant species productivity by correlating 18 years of monthly phenology observations with biannual estimates of above‐ground plant biomass for 98 plant species from semi‐arid drylands. We then paired these phenological traits with potential climate drivers to identify abiotic contexts that favour specific phenological strategies among plant species.Phenological traits predicted the stability of plant species above‐ground biomass. Plant species with longer vegetative phenophases not only had more stable biomass production over time but also failed to fruit in a greater proportion of years, indicating a growth–reproduction trade‐off. Earlier leaf‐out dates, longer fruiting duration and longer time lags between leaf and fruit production also predicted greater temporal stability.Species with stability‐promoting traits began greening in drier conditions than their unstable counterparts and experienced unexpectedly greater exposure to climate stress, indicated by the wider range of temperatures and precipitation experienced during biologically active periods.Our results suggest that bet‐hedging strategies that spread resource acquisition and reproduction over long time periods help to stabilize plant species productivity in variable environments, such as drylands. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

