Satellite observations have revealed that some of the world’s most intense deep convective storms occur near the Sierras de Córdoba, Argentina, South America. A C-band, dual-polarization Doppler weather radar recently installed in the city of Córdoba in 2015 is now providing a high-resolution radar perspective of this intense convection. Radar data from two austral spring and summer seasons (2015–17) are used to document the convective life cycle, while reanalysis data are utilized to construct storm environments across this region. Most of the storms in the region are multicellular and initiate most frequently during the early afternoon and late evening hours near and just east of the Sierras de Córdoba. Annually, the peak occurrence of these storms is during the austral summer months of December, January, and February. These Córdoba radar-based statistics are shown to be comparable to statistics derived from Tropical Rainfall Measuring Mission Precipitation Radar data. While generally similar to storm environments in the United States, storm environments in central Argentina tend to be characterized by larger CAPE and weaker low-level vertical wind shear. One of the more intriguing results is the relatively fast transition from first storms to larger mesoscale convective systems, compared with locations in the central United States.
more »
« less
Radar Survey of Hail-Producing Storms and Environments during the 2018–19 Severe-Weather Season in the Córdoba Region of Argentina
Abstract Frequent deep convective thunderstorms and mesoscale convective systems make the Córdoba region, near the Sierras de Córdoba mountain range, one of the most active areas on Earth for hail activity. Analysis of hail observations from trained observers and social media reports cross-referenced with operational radar observations identified the convective characteristics of hail-producing convective systems in central Argentina over a 6-month period divided into early (October–December 2018) and late seasons (January–March 2019). Reflectivity and dual-polarization characteristics from the Córdoba operational radar [Radar Meteorológico Argentina (RMA1)] were used to identify the convective modes of convective cells at time of positive hail indicators. Analysis of ERA5 upper-air and surface data examined convective environments of hail events and identified representative dynamic and thermodynamic environments. A majority of early season hail-producing cells were classified as discrete convection, while discrete and multicell occurrence evened out in the late season. Most hail-producing cells initiated directly adjacent to the Sierras in the late season, while cell initiation and hail production is further spread out in the early season. Dividing convective events into dynamic/thermodynamic regimes based on values of 1000 J kg−1of CAPE and vertical wind shear of 20 m s−1results in most early season events reflecting shear-dominant characteristics (low CAPE, high shear) and most late-season events exhibiting CAPE-dominant characteristics (high CAPE, low shear). Strength and placement of low-level temperature and moisture anomalies/advection and upper-level jets largely defined the differences in the dominant regimes. Significance StatementThis study used regional radar data alongside hail reports from trained observers and social media to better understand the types and timing of storms identified as producing hail, given the lower resolution of satellite studies. Dividing the hail season (October–December; January–March) showed that within hail season, early season storms tended to be singular storms that formed across the region in environments with strong vertical winds and weak instability. Late-season storms were a mix of singular storms and multicellular storm systems focused on the mountains in weak vertical winds and strong instability. These results show differences from satellite studies and identify key representative hail-producing radar features and environmental regimes for this region, which could guide hail risk analysis within the severe-weather season.
more »
« less
- Award ID(s):
- 1661800
- PAR ID:
- 10502134
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Applied Meteorology and Climatology
- Volume:
- 63
- Issue:
- 4
- ISSN:
- 1558-8424
- Format(s):
- Medium: X Size: p. 575-593
- Size(s):
- p. 575-593
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboardGOES‐16with 1‐km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35‐dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies.more » « less
-
Córdoba Province in Argentina is a global hotspot for deep hail-producing storms. Previous studies of hail formation and detection largely relied on satellite snapshots or modeling studies, but lacked hail validation, relying instead on proxy metrics. To address this limitation, this study used hail collected in the mountainous Córdoba region in collaboration with the citizen science program “Cosecheros de Granizo 2018–2020” including from a record-breaking hail event and from the 2018–2019 RELAMPAGO field campaign. Three cases including a MCS and two supercells, which have verified hail in different environment locations relative to the Sierras de Córdoba, were analyzed for multi-spectral signatures in GOES-16 satellite data. Brightness temperatures decreased over time after convective initiation, reaching values cooler than the tropopause with variations around those values of different magnitudes. Overall, all cases exhibited a slight weakening of the updraft and strong presence of smaller ice crystal sizes just prior to the hail report, especially for the larger hailstones. The results demonstrate promise in using satellite proxies for hail detection in multiple environments for different storm modes. The long-term goal is to better understand hail-producing storms and unique challenges of forecasting hail in this region.more » « less
-
null (Ed.)Abstract Storms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail. We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories.more » « less
-
Abstract Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.more » « less