Speech recognition by both humans and machines frequently fails in non-optimal yet common situations. For example, word recognition error rates for second-language (L2) speech can be high, especially under conditions involving background noise. At the same time, both human and machine speech recognition sometimes shows remarkable robustness against signal- and noise-related degradation. Which acoustic features of speech explain this substantial variation in intelligibility? Current approaches align speech to text to extract a small set of pre-defined spectro-temporal properties from specific sounds in particular words. However, variation in these properties leaves much cross-talker variation in intelligibility unexplained. We examine an alternative approach utilizing a perceptual similarity space acquired using self-supervised learning. This approach encodes distinctions between speech samples without requiring pre-defined acoustic features or speech-to-text alignment. We show that L2 English speech samples are less tightly clustered in the space than L1 samples reflecting variability in English proficiency among L2 talkers. Critically, distances in this similarity space are perceptually meaningful: L1 English listeners have lower recognition accuracy for L2 speakers whose speech is more distant in the space from L1 speech. These results indicate that perceptual similarity may form the basis for an entirely new speech and language analysis approach.
more »
« less
From the perspective of perceptual speech quality: The robustness of frequency bands to noise
Speech quality is one of the main foci of speech-related research, where it is frequently studied with speech intelligibility, another essential measurement. Band-level perceptual speech intelligibility, however, has been studied frequently, whereas speech quality has not been thoroughly analyzed. In this paper, a Multiple Stimuli With Hidden Reference and Anchor (MUSHRA) inspired approach was proposed to study the individual robustness of frequency bands to noise with perceptual speech quality as the measure. Speech signals were filtered into thirty-two frequency bands with compromising real-world noise employed at different signal-to-noise ratios. Robustness to noise indices of individual frequency bands was calculated based on the human-rated perceptual quality scores assigned to the reconstructed noisy speech signals. Trends in the results suggest the mid-frequency region appeared less robust to noise in terms of perceptual speech quality. These findings suggest future research aiming at improving speech quality should pay more attention to the mid-frequency region of the speech signals accordingly.
more »
« less
- PAR ID:
- 10502200
- Publisher / Repository:
- Acoustical Society of America
- Date Published:
- Journal Name:
- The Journal of the Acoustical Society of America
- Volume:
- 155
- Issue:
- 3
- ISSN:
- 0001-4966
- Page Range / eLocation ID:
- 1916 to 1927
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spectrotemporal modulations (STM) are essential features of speech signals that make them intelligible. While their encoding has been widely investigated in neurophysiology, we still lack a full understanding of how STMs are processed at the behavioral level and how cochlear hearing loss impacts this processing. Here, we introduce a novel methodological framework based on psychophysical reverse correlation deployed in the modulation space to characterize the mechanisms underlying STM detection in noise. We derive perceptual filters for young normal-hearing and older hearing-impaired individuals performing a detection task of an elementary target STM (a given product of temporal and spectral modulations) embedded in other masking STMs. Analyzed with computational tools, our data show that both groups rely on a comparable linear (band-pass)–nonlinear processing cascade, which can be well accounted for by a temporal modulation filter bank model combined with cross-correlation against the target representation. Our results also suggest that the modulation mistuning observed for the hearing-impaired group results primarily from broader cochlear filters. Yet, we find idiosyncratic behaviors that cannot be captured by cochlear tuning alone, highlighting the need to consider variability originating from additional mechanisms. Overall, this integrated experimental-computational approach offers a principled way to assess suprathreshold processing distortions in each individual and could thus be used to further investigate interindividual differences in speech intelligibility.more » « less
-
Native talkers are able to enhance acoustic characteristics of their speech in a speaking style known as “clear speech,” which is better understood by listeners than “plain speech.” However, despite substantial research in the area of clear speech, it is less clear whether non-native talkers of various proficiency levels are able to adopt a clear speaking style and if so, whether this style has perceptual benefits for native listeners. In the present study, native English listeners evaluated plain and clear speech produced by three groups: native English talkers, non-native talkers with lower proficiency, and non-native talkers with higher proficiency. Listeners completed a transcription task (i.e., an objective measure of the speech intelligibility). We investigated intelligibility as a function of language background and proficiency and also investigated the acoustic modifications that are associated with these perceptual benefits. The results of the study suggest that both native and non-native talkers modulate their speech when asked to adopt a clear speaking style, but that the size of the acoustic modifications, as well as consequences of this speaking style for perception differ as a function of language background and language proficiency.more » « less
-
Despite the advent of numerous Internet-of-Things (IoT) applications, recent research demonstrates potential side-channel vulnerabilities exploiting sensors which are used for event and environment monitoring. In this paper, we propose a new side-channel attack, where a network of distributed non-acoustic sensors can be exploited by an attacker to launch an eavesdropping attack by reconstructing intelligible speech signals. Specifically, we present PitchIn to demonstrate the feasibility of speech reconstruction from non-acoustic sensor data collected offline across networked devices. Unlike speech reconstruction which requires a high sampling frequency (e.g., > 5 KHz), typical applications using non-acoustic sensors do not rely on richly sampled data, presenting a challenge to the speech reconstruction attack. Hence, PitchIn leverages a distributed form of Time Interleaved Analog-Digital-Conversion (TIADC) to approximate a high sampling frequency, while maintaining low per-node sampling frequency. We demonstrate how distributed TI-ADC can be used to achieve intelligibility by processing an interleaved signal composed of different sensors across networked devices. We implement PitchIn and evaluate reconstructed speech signal intelligibility via user studies. PitchIn has word recognition accuracy as high as 79%. Though some additional work is required to improve accuracy, our results suggest that eavesdropping using a fusion of non-acoustic sensors is a real and practical threat.more » « less
-
Recent work on perceptual learning for speech has suggested that while high-variability training typically results in generalization, low-variability exposure can sometimes be sufficient for cross-talker generalization. We tested predictions of a similarity-based account, according to which, generalization depends on training-test talker similarity rather than on exposure to variability. We compared perceptual adaptation to second-language (L2) speech following single- or multiple-talker training with a round-robin design in which four L2 English talkers from four different first-language (L1) backgrounds served as both training and test talkers. After exposure to 60 L2 English sentences in one training session, cross-talker/cross-accent generalization was possible (but not guaranteed) following either multiple- or single-talker training with variation across training-test talker pairings. Contrary to predictions of the similarity-based account, adaptation was not consistently better for identical than for mismatched training-test talker pairings, and generalization patterns were asymmetrical across training-test talker pairs. Acoustic analyses also revealed a dissociation between phonetic similarity and cross-talker/cross-accent generalization. Notably, variation in adaptation and generalization related to variation in training phase intelligibility. Together with prior evidence, these data suggest that perceptual learning for speech may benefit from some combination of exposure to talker variability, training-test similarity, and high training phase intelligibility.more » « less
An official website of the United States government

