- Award ID(s):
- 2020624
- NSF-PAR ID:
- 10309886
- Date Published:
- Journal Name:
- Trends in Hearing
- Volume:
- 25
- ISSN:
- 2331-2165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Wei, Xue-Xin (Ed.)Theories of efficient coding propose that the auditory system is optimized for the statistical structure of natural sounds, yet the transformations underlying optimal acoustic representations are not well understood. Using a database of natural sounds including human speech and a physiologically-inspired auditory model, we explore the consequences of peripheral (cochlear) and mid-level (auditory midbrain) filter tuning transformations on the representation of natural sound spectra and modulation statistics. Whereas Fourier-based sound decompositions have constant time-frequency resolution at all frequencies, cochlear and auditory midbrain filters bandwidths increase proportional to the filter center frequency. This form of bandwidth scaling produces a systematic decrease in spectral resolution and increase in temporal resolution with increasing frequency. Here we demonstrate that cochlear bandwidth scaling produces a frequency-dependent gain that counteracts the tendency of natural sound power to decrease with frequency, resulting in a whitened output representation. Similarly, bandwidth scaling in mid-level auditory filters further enhances the representation of natural sounds by producing a whitened modulation power spectrum (MPS) with higher modulation entropy than both the cochlear outputs and the conventional Fourier MPS. These findings suggest that the tuning characteristics of the peripheral and mid-level auditory system together produce a whitened output representation in three dimensions (frequency, temporal and spectral modulation) that reduces redundancies and allows for a more efficient use of neural resources. This hierarchical multi-stage tuning strategy is thus likely optimized to extract available information and may underlies perceptual sensitivity to natural sounds.more » « less
-
Abstract This review examines the role of auditory training on speech adaptation for cochlear implant users. A current limitation of the existing evidence base is the failure to adequately account for wide variability in speech perception outcomes following implantation. While many preimplantation factors contribute to the variance observed in outcomes, formal auditory training has been proposed as a way to maximize speech comprehension benefits for cochlear implant users. We adopt an interdisciplinary perspective and focus on integrating the clinical rehabilitation literature with basic research examining perceptual learning of speech. We review findings on the role of auditory training for improving perception of degraded speech signals in normal hearing listeners, with emphasis on how lexically oriented training paradigms may facilitate speech comprehension when the acoustic input is diminished. We conclude with recommendations for future research that could foster translation of principles of speech learning in normal hearing listeners to aural rehabilitation protocols for cochlear implant patients.
-
Bizley, Jennifer K. (Ed.)
Hearing one’s own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency.
-
Abstract Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65–150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real‐time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200–300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback‐based control of vocal pitch.
Hum Brain Mapp 37:1474‐1485, 2016 . © 2016 Wiley Periodicals, Inc. -
The frequency-dependent nature of hearing loss poses many challenges for hearing aid design. In order to compensate for a hearing aid user’s unique hearing loss pattern, an input signal often needs to be separated into frequency bands, or channels, through a process called sub-band decomposition. In this paper, we present a real-time filter bank for hearing aids. Our filter bank features 10 channels uniformly distributed on the logarithmic scale, located at the standard audiometric frequencies used for the characterization and fitting of hearing aids. We obtained filters with very narrow passbands in the lower frequencies by employing multi-rate signal processing. Our filter bank offers a 9.1× reduction in complexity as compared to conventional signal processing. We implemented our filter bank on Open Speech Platform, an open-source hearing aid, and confirmed real-time operation.more » « less